针对现有自适应滤波算法中数据处理效率低的问题,提出了基于并行技术和流水线的最小均方误差(Least mean square,LMS)自适应滤波算法。该算法构建基于并行技术的多输入多输出滤波器结构,成倍提高系统滤波处理速度;设计基于流水线的LMS...针对现有自适应滤波算法中数据处理效率低的问题,提出了基于并行技术和流水线的最小均方误差(Least mean square,LMS)自适应滤波算法。该算法构建基于并行技术的多输入多输出滤波器结构,成倍提高系统滤波处理速度;设计基于流水线的LMS自适应滤波权系数求解方法,有效改善了权系数计算效率。最后利用现场可编程门阵列(Field programmable gate array,FPGA)对该算法进行了验证,结果表明,对于四级并行流水线四阶LMS自适应滤波器,其数据处理速率提高了约8倍,在相同的数据处理速率下,其功耗可降低约84%,从而提高了LMS自适应滤波处理速率,降低了系统功耗,实现了高速、超高速数据流的实时自适应滤波处理。展开更多
基于滤波X最小均方差(filtered-X least mean square,简称FXLMS)控制方法实施振动主动控制的基本结构,提出了参考信号自提取的控制器结构和算法,直接利用系统误差信号获得对原激扰信号的一个估计,并用估计值作为自适应滤波器的参考信号...基于滤波X最小均方差(filtered-X least mean square,简称FXLMS)控制方法实施振动主动控制的基本结构,提出了参考信号自提取的控制器结构和算法,直接利用系统误差信号获得对原激扰信号的一个估计,并用估计值作为自适应滤波器的参考信号,以实现与外激扰信号的相关性。在针对控制算法进行Matlab仿真分析的基础上,构建了压电机敏柔性板试验模型和测控平台,并进行了算法验证。试验结果表明,该控制算法不仅实现了参考信号从振动结构中直接提取,并具有较快的收敛速度和良好的控制效果。展开更多
文摘基于滤波X最小均方差(filtered-X least mean square,简称FXLMS)控制方法实施振动主动控制的基本结构,提出了参考信号自提取的控制器结构和算法,直接利用系统误差信号获得对原激扰信号的一个估计,并用估计值作为自适应滤波器的参考信号,以实现与外激扰信号的相关性。在针对控制算法进行Matlab仿真分析的基础上,构建了压电机敏柔性板试验模型和测控平台,并进行了算法验证。试验结果表明,该控制算法不仅实现了参考信号从振动结构中直接提取,并具有较快的收敛速度和良好的控制效果。