期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于稳健距离的大数据Logistic回归最优子抽样 被引量:2
1
作者 韩潇 王明秋 赵胜利 《统计与决策》 CSSCI 北大核心 2024年第15期59-64,共6页
大数据统计分析在有限的计算资源下面临一些挑战性问题,用子数据代替全数据进行统计分析成为一种选择。文章基于最小协方差行列式的稳健距离,为大数据Logistic回归模型提出了一种更高效的子数据选择算法。通过大量的数值模拟,在不同的... 大数据统计分析在有限的计算资源下面临一些挑战性问题,用子数据代替全数据进行统计分析成为一种选择。文章基于最小协方差行列式的稳健距离,为大数据Logistic回归模型提出了一种更高效的子数据选择算法。通过大量的数值模拟,在不同的标准下比较了所提算法与其他已有算法的性能。结果表明,所提算法具有较高的估计效率和计算效率,与全数据相比,计算时间显著减少。与其他算法相比,所提算法得到的子数据信息矩阵行列式的值更大。同时,当协变量之间存在高度相关性时,所提算法具有稳健性。最后,通过对实际数据集的分析,说明了所提算法的预测误差更小。 展开更多
关键词 最小协方差行列式 信息矩阵 最优子抽样
在线阅读 下载PDF
工业大数据驱动的高维过程质量稳健监控模型的构建与优化 被引量:2
2
作者 张帅 杨剑锋 闫莉 《机床与液压》 北大核心 2024年第18期48-53,共6页
由于工业大数据存在变量维度高、价值密度低、存在离群点等因素,监控模型难以准确挖掘海量数据中关键波动信息,容易产生较高的误警率,影响产品生产质量。为解决这个问题,提出一种基于最小行列式法和变量选择算法的高维过程稳健监控模型... 由于工业大数据存在变量维度高、价值密度低、存在离群点等因素,监控模型难以准确挖掘海量数据中关键波动信息,容易产生较高的误警率,影响产品生产质量。为解决这个问题,提出一种基于最小行列式法和变量选择算法的高维过程稳健监控模型。运用最小协方差行列式(MCD)方法估计稳健的均值向量和协方差矩阵;构建似然比检验统计量,通过增加惩罚项得到变量选择优化函数;结合MCD和变量选择得到稳健的监控统计量,利用Monte Carlo方法得到监控用控制限;最后,通过仿真数据和薄膜沉积过程实际数据对所提方法进行实证研究。结果表明:所提方法相比Hotelling T2和VS控制图具有较高的异常识别精度和鲁棒性,在存在离群点的高维过程质量监控中提高了对异常波动识别的稳健性,达到了期望的监控效率。 展开更多
关键词 工业大数据 最小协方差行列式估计 过程质量监控 变量选择算法
在线阅读 下载PDF
基于饮片切面图像纹理特征参数的中药辨识模型研究 被引量:22
3
作者 陶欧 林兆洲 +2 位作者 张宪宝 王耘 乔延江 《世界科学技术-中医药现代化》 北大核心 2014年第12期2558-2562,共5页
目的:建立基于切面图像纹理特征参数的辨识模型,探讨中药饮片自动识别的可行性。方法:基于中药饮片切面图像的灰度共生矩阵和灰度梯度共生矩阵,选取18种中药材不同样本图像的26个纹理特征参数,分别建立训练集和测试集。利用最小协方差... 目的:建立基于切面图像纹理特征参数的辨识模型,探讨中药饮片自动识别的可行性。方法:基于中药饮片切面图像的灰度共生矩阵和灰度梯度共生矩阵,选取18种中药材不同样本图像的26个纹理特征参数,分别建立训练集和测试集。利用最小协方差行列式MCD方法对训练集进行离群值剔除处理。采用朴素贝叶斯及BP神经网络2种建模方法和十折交叉验证,建立18种中药材的判别模型。结果:在提取的26个纹理特征参数的基础上,利用MCD方法剔除训练集的离群值后,用BP神经网络建立的判别模型判正率达到90%,说明效能良好。结论:将建立的辨识模型用于中药饮片的自动识别具有可行性,为中药直观鉴别的定量化、科学化以及客观化提供了一套新的技术手段。 展开更多
关键词 中药饮片 纹理特征参数 分类模型 最小协方差行列式 BP神经网络
在线阅读 下载PDF
基于MCD稳健估计的PCA人脸识别算法 被引量:11
4
作者 张蓓 王顺芳 《计算机工程与设计》 北大核心 2015年第3期778-782,共5页
针对人脸识别中,识别效果易受人脸修饰、部分遮挡、噪声干扰等不确定因素影响的问题,提出一种MCDPCA人脸识别算法以改进识别效果。基于主成分分析(PCA)进行特征脸提取,结合最小协方差行列式方法 (MCD)进行异常点检测和抗噪。针对人脸图... 针对人脸识别中,识别效果易受人脸修饰、部分遮挡、噪声干扰等不确定因素影响的问题,提出一种MCDPCA人脸识别算法以改进识别效果。基于主成分分析(PCA)进行特征脸提取,结合最小协方差行列式方法 (MCD)进行异常点检测和抗噪。针对人脸图像使用MCD算法,求出稳健的协方差矩阵估计,基于此协方差估计矩阵使用PCA技术提取重要的人脸特征用于识别。实验结果表明,在有遮挡和噪声干扰的情况下,相比传统PCA方法,该方法明显提高了人脸图像识别率。 展开更多
关键词 主成分分析 最小协方差行列式 随机噪声 异常值 人脸识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部