期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
采用最小似然bit同步的2PSK系统的性能分析 被引量:1
1
作者 孙红霞 《郑州大学学报(自然科学版)》 CAS 1991年第2期63-65,共3页
本文通过对最小似然bit同步定时误差及其与误码率关系的讨论,分析了采用最小似然bit同步的2pck七系统的性能。
关键词 误码率 最小似然 通信系统
在线阅读 下载PDF
基于分类统计的PolInSAR植被高度最大似然估计 被引量:3
2
作者 韦顺军 张晓玲 《现代雷达》 CSCD 北大核心 2009年第11期60-63,共4页
极化干涉SAR是一种集极化和干涉SAR优势于一体的新型遥感技术。结合两层植被随机体散射模型和极化分解技术,基于极化干涉SAR数据的概率分布统计特征,提出一种利用参数迭代求解预测模型和测量值最小似然距离的植被高度反演方法。该方法... 极化干涉SAR是一种集极化和干涉SAR优势于一体的新型遥感技术。结合两层植被随机体散射模型和极化分解技术,基于极化干涉SAR数据的概率分布统计特征,提出一种利用参数迭代求解预测模型和测量值最小似然距离的植被高度反演方法。该方法克服了传统最大似然估计方法需已知地表散射特征参数的约束,减少了计算复杂性。最后通过极化干涉SAR仿真数据实验分析,文中算法相对于三阶段反演算法提高了植被高度估计的精度,验证了算法的有效性。 展开更多
关键词 合成孔径雷达 极化干涉SAR 最小似然距离 植被高度反演
在线阅读 下载PDF
基于STLS的卫星惯量矩阵在轨估计
3
作者 林佳伟 王平 《中国空间科学技术》 EI CSCD 北大核心 2010年第6期31-38,共8页
提出了一种采用结构总体最小二乘(Structured total least squares,STLS)进行卫星惯量矩阵在轨估计的方法,与当前估计方法相比,该方法在考虑敏感器测量噪声时能获得一致估计。首先由动量守恒定律得到估计方程,针对该方程的特点定义了惯... 提出了一种采用结构总体最小二乘(Structured total least squares,STLS)进行卫星惯量矩阵在轨估计的方法,与当前估计方法相比,该方法在考虑敏感器测量噪声时能获得一致估计。首先由动量守恒定律得到估计方程,针对该方程的特点定义了惯量矩阵的STLS估计,并使用结构总体最小范数(Structured total least norm,STLN)算法进行求解。证明了当噪声为高斯分布时该STLS估计为极大似然估计,给出了该STLS估计具有一致性的充分条件,仿真结果验证了文章所提估计方法的有效性。 展开更多
关键词 结构总体最小二乘 结构总体最小范数极大估计 一致估计 惯量矩阵 在轨估计 卫星姿态控制
在线阅读 下载PDF
Characteristics for wind energy and wind turbines by considering vertical wind shear 被引量:8
4
作者 郑玉巧 赵荣珍 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2393-2398,共6页
The probability distributions of wind speeds and the availability of wind turbines were investigated by considering the vertical wind shear. Based on the wind speed data at the standard height observed at a wind farm,... The probability distributions of wind speeds and the availability of wind turbines were investigated by considering the vertical wind shear. Based on the wind speed data at the standard height observed at a wind farm, the power-law process was used to simulate the wind speeds at a hub height of 60 m. The Weibull and Rayleigh distributions were chosen to express the wind speeds at two different heights. The parameters in the model were estimated via the least square(LS) method and the maximum likelihood estimation(MLE) method, respectively. An adjusted MLE approach was also presented for parameter estimation. The main indices of wind energy characteristics were calculated based on observational wind speed data. A case study based on the data of Hexi area, Gansu Province of China was given. The results show that MLE method generally outperforms LS method for parameter estimation, and Weibull distribution is more appropriate to describe the wind speed at the hub height. 展开更多
关键词 Weibull distribution wind power vertical wind shear power-law process parameter estimation
在线阅读 下载PDF
Reliability evaluation for Weibull distribution under multiply type-? censoring 被引量:1
5
作者 贾祥 蒋平 郭波 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3506-3511,共6页
The multiply type-I censoring represented that all units in life test were terminated at different times. For estimations of Weibull parameters, it was easy to compute the maximum likelihood estimation (MLE) and lea... The multiply type-I censoring represented that all units in life test were terminated at different times. For estimations of Weibull parameters, it was easy to compute the maximum likelihood estimation (MLE) and least-squares estimation (LSE) while it was hard to build confidence intervals (CI). The concept of generalized confidence interval (GCI) was introduced to build CIs of parameters under multiply type-I censoring. Further, GCI based on LSE and GCI based on MLE were proposed. It is mathematically proved that the former is exact and the latter is approximate. Besides, a Monte Carlo simulation study and an illustrative example also Ran out that the GCI method based on LSE yields rather satisfactory results by comparison with the ones based on MLE. It should be clear that the GCI method is a sensible choice to evaluate reliability under multiply type-I censoring. 展开更多
关键词 multiply type-I censoring generalized confidence interval maximum likelihood estimation least-squares estimation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部