期刊文献+
共找到84篇文章
< 1 2 5 >
每页显示 20 50 100
基于模糊神经网络对抗生成的城市固废焚烧过程二噁英排放预警
1
作者 崔璨麟 汤健 +1 位作者 夏恒 乔俊飞 《控制理论与应用》 北大核心 2025年第4期757-766,共10页
城市固废焚烧(MSWI)过程产生的二噁英(DXN)类剧毒污染物是全世界范围内备受关注的环保指标,进行DXN排放浓度预警是缓解焚烧建厂“邻避效应”和实现城市精准污染防控等难题的关键之一.受限于产生机理上的全流程相关、记忆效应等特性以及... 城市固废焚烧(MSWI)过程产生的二噁英(DXN)类剧毒污染物是全世界范围内备受关注的环保指标,进行DXN排放浓度预警是缓解焚烧建厂“邻避效应”和实现城市精准污染防控等难题的关键之一.受限于产生机理上的全流程相关、记忆效应等特性以及检测技术上的高难度和离线化验上的高成本等原因,DXN建模数据面临着维数高、不确定性强和样本稀疏等问题.对此,本文提出基于模糊神经网络(FNN)对抗生成的DXN排放预警方法.首先,采用基于随机森林(RF)的自适应特征选择算法降低输入变量维数;接着,基于FNN的生成对抗网络(GAN)迭代产生用于预警建模的候选虚拟样本,以缓解不确定性和稀疏性问题;然后,通过多约束选择机制进行虚拟样本筛选以提高样本质量;最后,构建基于真实与虚拟混合样本的DXN排放预警模型.基于北京某MSWI电厂的实际DXN数据验证了所提方法的有效性. 展开更多
关键词 城市固废焚烧 噁英 模糊神经网络 生成对抗网络 虚拟样本 预警模型
在线阅读 下载PDF
基于最小熵准则与生成对抗网络的SAR三维转动舰船目标重聚焦方法 被引量:1
2
作者 化青龙 张云 +2 位作者 任航 姜义成 徐丹 《电子学报》 EI CAS CSCD 北大核心 2024年第8期2900-2912,共13页
在合成孔径雷达(Synthetic Aperture Radar,SAR)系统中,舰船目标在中高海情下的三维转动会导致多普勒频谱时变和图像散焦,并对后续SAR舰船目标的信息解释造成不利影响.针对三维转动舰船目标的重聚焦问题,本文提出一种基于最小熵准则与... 在合成孔径雷达(Synthetic Aperture Radar,SAR)系统中,舰船目标在中高海情下的三维转动会导致多普勒频谱时变和图像散焦,并对后续SAR舰船目标的信息解释造成不利影响.针对三维转动舰船目标的重聚焦问题,本文提出一种基于最小熵准则与生成对抗网络的SAR三维转动舰船目标重聚焦方法,设计了生成器和判别器的网络结构.生成器将散焦SAR舰船复图像变换到距离-多普勒域,利用相位误差系数估计网络逐距离单元估计相位误差系数,并实现对多阶次相位误差的补偿.判别器由一个复数域卷积神经网络构成,其所有元素,包括卷积层、激活函数、特征图和网络参数,均被扩展到复数域.损失函数中引入最小熵准则和对抗损失进行无监督训练,避免非合作舰船目标标注样本难以获取的问题.在仿真数据和高分三号SAR数据上的实验表明,该方法在重聚焦精度和效率上均有显著提升. 展开更多
关键词 合成孔径雷达 生成对抗网络 舰船目标 重聚焦 最小熵准则
在线阅读 下载PDF
最小二乘迁移生成对抗网络 被引量:3
3
作者 王孝顺 陈丹 丘海斌 《计算机工程与应用》 CSCD 北大核心 2019年第14期24-31,共8页
现有的生成对抗网络(Generative Adversarial Networks,GAN)损失函数已经被成功地应用在迁移学习方法中。然而,发现这种损失函数在学习过程中可能会出现梯度消失的问题。为了克服该问题,提出了一种学习领域不变特征的新方法,即最小二乘... 现有的生成对抗网络(Generative Adversarial Networks,GAN)损失函数已经被成功地应用在迁移学习方法中。然而,发现这种损失函数在学习过程中可能会出现梯度消失的问题。为了克服该问题,提出了一种学习领域不变特征的新方法,即最小二乘迁移生成对抗网络(Least Squares Transfer Generative Adversarial Networks,LSTGAN)。LSTGAN采用最小二乘生成对抗网络(Least Squares Generative Adversarial Networks,LSGAN)损失函数,通过单领域判别的训练方式来减少领域分布之间的差异。通过研究表明,所提方法与其他有竞争力的算法相比较具有一定的优越性。 展开更多
关键词 生成对抗网络 迁移学习 梯度消失 领域不变特征 最小二乘生成对抗网络损失函数
在线阅读 下载PDF
基于时序生成对抗网络的居民用户非侵入式负荷分解 被引量:3
4
作者 罗平 朱振宇 +3 位作者 樊星驰 孙博宇 张帆 吕强 《电力系统自动化》 EI CSCD 北大核心 2024年第2期71-81,共11页
现有的非侵入式负荷分解算法往往需要大量电器设备级的负荷数据才能保证分解精度,但由于用户对隐私性的考虑以及安装成本过高等问题,很难获取这些数据。因此,构建一种能深度挖掘电力负荷数据时序特性和电器相关性的时序生成对抗网络。... 现有的非侵入式负荷分解算法往往需要大量电器设备级的负荷数据才能保证分解精度,但由于用户对隐私性的考虑以及安装成本过高等问题,很难获取这些数据。因此,构建一种能深度挖掘电力负荷数据时序特性和电器相关性的时序生成对抗网络。利用降维网络对所有电器有功功率序列组成的高维向量进行降维以降低计算的复杂度,通过复原网络将结果还原为高维向量。基于电器运行状态和深度学习的非侵入式分解方法,运用卷积神经网络-双向门控循环单元构建状态复杂电器的负荷分解回归模型,对状态简单电器利用深度神经网络构建负荷识别分类模型。通过对比其他数据生成方法,以及改变典型公开数据集中生成数据比例所得的负荷分解结果验证了所提方法的有效性。 展开更多
关键词 非侵入式负荷分解 对抗生成网络 降维网络 卷积神经网络-双向门控循环单元 深度神经网络
在线阅读 下载PDF
基于循环生成对抗网络的逆时偏移成像结果优化
5
作者 黄建平 刘博文 +6 位作者 黄韵博 孙加星 李亚林 雷刚林 段文胜 陈飞旭 侯中根 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第5期36-45,共10页
在常规逆时偏移方法基础上,通过引入循环生成对抗网络(CycleGAN)发展一种基于循环生成对抗网络的逆时偏移成像结果优化方法。首先构建包含两个生成器和两个判别器的CycleGAN。在对抗损失、循环一致性损失函数的基础上,添加身份损失函数... 在常规逆时偏移方法基础上,通过引入循环生成对抗网络(CycleGAN)发展一种基于循环生成对抗网络的逆时偏移成像结果优化方法。首先构建包含两个生成器和两个判别器的CycleGAN。在对抗损失、循环一致性损失函数的基础上,添加身份损失函数,以避免训练过度;然后,组建样本集来训练网络,使其学习常规逆时偏移成像结果和最小二乘逆时偏移成像结果之间的映射关系;最后,利用其他合成数据和实际资料测试网络效果。结果表明,提出的基于循环生成对抗网络的逆时偏移成像结果优化方法在获得高精度、高信噪比成像结果的同时有效地提高了计算效率。 展开更多
关键词 循环生成对抗网络 残差网络 逆Hessian 最小二乘逆时偏移
在线阅读 下载PDF
基于渐进式增长生成对抗网络的月度源荷场景生成 被引量:4
6
作者 朱陈政翰 柳东歌 +3 位作者 黄津钜 韩晓男 高源 孙英云 《高电压技术》 EI CAS CSCD 北大核心 2024年第9期3955-3964,I0016-I0019,共14页
月度场景生成是月度时序生产模拟、制定电量计划以及细化场景分析的基础。针对月度源荷场景建模通常面临的多元高维变量拟合困难、源-荷不确定性加剧等问题,提出一种基于渐进式增长生成对抗网络的月度源荷场景生成新方法。对月度时序功... 月度场景生成是月度时序生产模拟、制定电量计划以及细化场景分析的基础。针对月度源荷场景建模通常面临的多元高维变量拟合困难、源-荷不确定性加剧等问题,提出一种基于渐进式增长生成对抗网络的月度源荷场景生成新方法。对月度时序功率序列进行均值拆分处理,以得到多时间尺度功率序列,将源荷序列纵向拼接并结合多时间尺度特性设计相应的二维卷积结构;采用平滑渐进式增长方式及特殊训练策略,逐步生成多颗粒度的源荷场景;生成网络解构低维与高维特征,首先学习月、周下的日尺度特性,再逐渐拟合高维非线性特征,以生成小时级别的720月度场景。最后,基于实际风-光-荷数据集进行算例分析。结果表明所提算法在月度源荷场景生成的有效性,可为月度调度规划提供参考。 展开更多
关键词 多时间尺度 月度场景生成 渐进式增长生成对抗网络 -荷不确定性 数据驱动 调度规划
在线阅读 下载PDF
有条件生成对抗网络的IVUS图像内膜与中-外膜边界检测 被引量:4
7
作者 袁绍锋 杨丰 +3 位作者 徐琳 吴洋洋 黄靖 刘娅琴 《中国生物医学工程学报》 CAS CSCD 北大核心 2019年第2期146-156,共11页
针对血管内超声(IVUS)图像中各类斑块、超声阴影和血管分支等造成内膜(LU)与中-外膜(MA)边界难以准确检测的问题,提出一种结合堆叠沙漏网络(SHGN)和有条件生成对抗网络(C-GAN)的IVUS内膜与中-外膜检测的改进方法。首先根据血管形态特点... 针对血管内超声(IVUS)图像中各类斑块、超声阴影和血管分支等造成内膜(LU)与中-外膜(MA)边界难以准确检测的问题,提出一种结合堆叠沙漏网络(SHGN)和有条件生成对抗网络(C-GAN)的IVUS内膜与中-外膜检测的改进方法。首先根据血管形态特点,使用旋转、缩放和Gamma变换等方法将图像训练集扩充57倍,降低网络训练过拟合风险;然后利用对抗训练思想,构建基于L1、L2重建损失的联合损失函数,学习超声图像与其对应分割图像的映射关系,将IVUS图像分割为3种不同区域:血管外周组织、斑块区域和内腔区域;最后在图像分割结果上,采用阈值处理方法,检测最终的内膜与中-外膜边界。采用国际标准IVUS图像数据集(10位病人435幅)评价所提出的算法。实验量化评价结果为:内膜计算面积交并比(JM) 93%,面积差异百分比(PAD) 3%,Hausdorff距离(HD) 0.19 mm;中-外膜JM 95%,PAD 3%,HD 0.16 mm。这些指标满足临床诊断要求,性能优于现有的、近年较好的9种算法,以及Pix2Pix模型。在临床实践应用分析中,利用南部战区总医院心血管内科所收集的100幅IVUS图像进行检验,取得较好的分割结果。这表明该方法具有较好的跨数据集泛化性能。 展开更多
关键词 血管内超声 内膜与中-外膜边界检测 有条件生成对抗网络 堆叠沙漏网络 深度学习
在线阅读 下载PDF
基于循环对抗神经网络的快速最小二乘逆时偏移成像方法 被引量:4
8
作者 黄韵博 黄建平 +1 位作者 李振春 刘博文 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第3期55-61,共7页
最小二乘逆时偏移成像方法因计算量巨大,限制了其大规模的工业应用。基于此,建立循环对抗神经网络表征Hessian矩阵的逆,构建逆时偏移结果和反射系数之间的映射关系。通过建立的神经网络对逆时偏移成像结果进行去模糊化处理,提高成像质量... 最小二乘逆时偏移成像方法因计算量巨大,限制了其大规模的工业应用。基于此,建立循环对抗神经网络表征Hessian矩阵的逆,构建逆时偏移结果和反射系数之间的映射关系。通过建立的神经网络对逆时偏移成像结果进行去模糊化处理,提高成像质量,同时大幅减少计算时间。将训练好的网络应用于Marmousi模型和Sigsbee2A模型的逆时偏移结果。结果表明,本文方法在不显著增加计算量的情况下较好地提高了逆时偏移成像质量。 展开更多
关键词 逆时偏移 最小二乘 HESSIAN矩阵 循环对抗神经网络
在线阅读 下载PDF
基于生成对抗网络的主机入侵风险识别 被引量:1
9
作者 林英 李元培 潘梓文 《计算机应用与软件》 北大核心 2021年第11期331-337,共7页
随着互联网的发展,针对主机漏洞发起的入侵层出不穷,计算机安全问题日益突出,基于深度学习的入侵检测成为研究热点,但仍然存在攻击训练样本少以及无法有效检测未知攻击的问题。基于AC-GAN和LS-GAN,设计并实现主机入侵风险识别网络TR-GAN... 随着互联网的发展,针对主机漏洞发起的入侵层出不穷,计算机安全问题日益突出,基于深度学习的入侵检测成为研究热点,但仍然存在攻击训练样本少以及无法有效检测未知攻击的问题。基于AC-GAN和LS-GAN,设计并实现主机入侵风险识别网络TR-GAN,该模型能有效解决梯度偏移或梯度消失的问题。TR-GAN相较于AC-GAN及LS-GAN,不但风险识别准确率更稳定,最大识别准确率达到80%,且其风险样本生成模块能在较少训练迭代轮数下就生成与真实攻击样本具有相同特征的攻击样本。生成的攻击样本不但可以作为训练样本的补充,而且可作为部署系统安全策略的参考。 展开更多
关键词 入侵风险识别 生成对抗网络 辅助分类器-生成对抗网络 最小二乘-生成对抗网络 主机特征
在线阅读 下载PDF
基于条件生成对抗网络的深度点过程二次预测
10
作者 卞玮 李晨龙 侯红卫 《计算机工程》 CAS CSCD 北大核心 2022年第12期127-133,共7页
结合深度神经网络和时序点过程的深度点过程模型在进行时间预测时,会因模型本身系统误差和数值计算精度不足而导致预测值序列中存在较大偏差。为提高预测精度并有效避免模型调优同时降低数值误差,建立一种基于条件生成对抗网络(CGAN)的... 结合深度神经网络和时序点过程的深度点过程模型在进行时间预测时,会因模型本身系统误差和数值计算精度不足而导致预测值序列中存在较大偏差。为提高预测精度并有效避免模型调优同时降低数值误差,建立一种基于条件生成对抗网络(CGAN)的深度点过程二次预测模型,在深度点过程初次预测值序列的基础上进行二次预测。假设初次预测偏差来自时序点过程分布上的差异,利用CGAN对分布的变换能力来修正初次预测值序列分布为原始时序点过程序列分布,从而降低预测值序列误差。在流程上,将初次预测值序列输入生成器生成伪值序列,将伪值序列与对应的真实值序列输入判别器中判别真假,经过对抗训练得到对初次预测值序列具备修正能力的生成器。同时,为增强CGAN对时序点过程数据的匹配度,在其结构上采用CGAN+LSTM的形式,同时改进损失函数为时序点过程Wasserstein距离的对偶形式及其1-Lipschitz约束。实验结果表明,该模型具有较高的时间预测准确度,二次预测值序列的均方误差相较初次预测值序列平均降低77%以上。 展开更多
关键词 深度点过程 次预测 条件生成对抗网络 Wasserstein距离 1-Lipschitz约束
在线阅读 下载PDF
基于条件生成对抗网络的手绘图像检索 被引量:12
11
作者 刘玉杰 窦长红 +2 位作者 赵其鲁 李宗民 李华 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2017年第12期2336-2342,共7页
传统的手绘图像检索方法将自然图像通过边缘检测算法转换成"类手绘图",不能很好地减小自然图像与手绘图像之间的视觉差异.针对此问题,提出一种基于条件生成对抗网络的手绘图像检索方法.首先训练条件生成对抗网络,其中生成器... 传统的手绘图像检索方法将自然图像通过边缘检测算法转换成"类手绘图",不能很好地减小自然图像与手绘图像之间的视觉差异.针对此问题,提出一种基于条件生成对抗网络的手绘图像检索方法.首先训练条件生成对抗网络,其中生成器由边缘图至自然图像的映射网络构成;然后通过生成器将手绘图转换为自然图像,以消除二者的视觉差异;最后使用深度卷积神经网络提取深度特征进行相似度度量,达到检索的目的.在基准数据库上进行实验的结果显示,该方法的检索精度有明显提高. 展开更多
关键词 手绘图像检索 条件生成对抗网络 编码-解码网络 卷积神经网络
在线阅读 下载PDF
基于循环生成对抗网络的图像风格迁移 被引量:8
12
作者 彭晏飞 王恺欣 +2 位作者 梅金业 桑雨 訾玲玲 《计算机工程与科学》 CSCD 北大核心 2020年第4期699-706,共8页
图像风格迁移是指将学习到的油画图像风格应用到其他图像上,让图像拥有油画的风格,当前生成对抗网络已被广泛应用到图像风格迁移中。针对循环生成对抗网络CycleGAN在处理图像时纹理清晰度不高的问题,提出了加入局部二值模式LBP算法的方... 图像风格迁移是指将学习到的油画图像风格应用到其他图像上,让图像拥有油画的风格,当前生成对抗网络已被广泛应用到图像风格迁移中。针对循环生成对抗网络CycleGAN在处理图像时纹理清晰度不高的问题,提出了加入局部二值模式LBP算法的方法,将LBP算法加入生成对抗网络的生成器中,增强了循环对抗生成网络提取图像纹理特征内容的效果。针对生成图像产生噪声的问题,在损失函数中加入Total Variation Loss来约束噪声。实验结果表明,循环生成对抗网络加入LBP算法和Total Variation Loss后能提高生成图像的质量,使之具有更好的视觉效果。 展开更多
关键词 图像风格迁移 循环生成对抗网络 局部值模式 TOTAL VARIATION LOSS
在线阅读 下载PDF
基于生成对抗网络的车辆换道轨迹预测模型 被引量:16
13
作者 温惠英 张伟罡 赵胜 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第5期32-40,共9页
车辆运动轨迹的预测在车辆的自动驾驶与车联网技术中有着重要意义,通过预测轨迹可以判断车辆未来运动状态,避免发生碰撞。针对车辆换道轨迹的预测问题,提出了基于生成对抗网络的换道轨迹预测模型。通过实车实验,以城市道路中换道行为为... 车辆运动轨迹的预测在车辆的自动驾驶与车联网技术中有着重要意义,通过预测轨迹可以判断车辆未来运动状态,避免发生碰撞。针对车辆换道轨迹的预测问题,提出了基于生成对抗网络的换道轨迹预测模型。通过实车实验,以城市道路中换道行为为实例,采用高精度GPS仪器采集车辆换道轨迹数据。在此基础上,建立基于生成对抗网络的轨迹预测模型,其中生成模型采用了LSTM的编码器-解码器结构,通过输入给定的历史换道轨迹,经解码器生成预测时段换道轨迹。判别模型通过搭建基于MLP的神经网络,将生成的预测轨迹与目标轨迹进行多重判别,并通过联合训练生成模型和判别模型,实现对车辆未来时段内的换道轨迹进行预测。同时通过交叉验证与模型对比,分析了不同长度的历史轨迹与预测轨迹对预测精度的影响,并验证了模型的有效性和准确性。结果表明轨迹生成对抗模型与传统模型相比,可实现对换道轨迹长时段的预测,且预测精度有明显的提高。 展开更多
关键词 车辆换道 轨迹预测 生成对抗网络 LSTM编码器-解码器
在线阅读 下载PDF
基于辅助分类–边界平衡生成式对抗网络的局部放电数据增强与多源放电识别 被引量:20
14
作者 朱永利 张翼 +1 位作者 蔡炜豪 高盎然 《中国电机工程学报》 EI CSCD 北大核心 2021年第14期5044-5053,共10页
为解决局部放电(partial discharge,PD)源诊断中放电样本的不平衡问题,并克服传统多源放电诊断方法对脉冲聚类分离效果的依赖,该文提出基于辅助分类–边界平衡生成式对抗网络(boundary equilibrium generative adversarial network with... 为解决局部放电(partial discharge,PD)源诊断中放电样本的不平衡问题,并克服传统多源放电诊断方法对脉冲聚类分离效果的依赖,该文提出基于辅助分类–边界平衡生成式对抗网络(boundary equilibrium generative adversarial network with auxiliary classifier,AC-BEGAN)的PD数据增强与多源放电识别方法。首先,对PD脉冲进行同步挤压小波变换(synchrosqueezed wavelet transform,SWT)作为训练样本。然后,在训练稳定性优越的BEGAN基础上,融合条件信息和辅助局放脉冲分类任务构建AC-BEGAN模型,旨在提升模型的生成能力并条件式地扩充训练样本。最后,采用扩充均衡的训练样本微调该辅助分类任务以学习多源放电中各单次脉冲的类别,并将占主导的脉冲标签的组合确定为该多源放电类型。结果表明,该方法相比于传统数据增强技术可以有效地均衡脉冲样本,同时可以克服传统诊断方法对聚类分离效果的依赖,直接实现多源放电诊断。 展开更多
关键词 多源局部放电 同步挤压小波变换 数据增强 辅助分类-边界平衡生成对抗网络
在线阅读 下载PDF
一种基于条件生成对抗网络的高感知图像压缩方法 被引量:8
15
作者 张雪峰 许华文 杨棉子美 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第6期783-791,共9页
针对如何获得符合人类视觉感知的压缩图像问题,提出了基于条件生成对抗网络的图像压缩模型(HPIC).在HPIC中,首先利用一个超先验概率模型对原始图像进行编码量化,将条件附加标签和残差模块相结合的生成器用于压缩图像的重建,基于深度卷... 针对如何获得符合人类视觉感知的压缩图像问题,提出了基于条件生成对抗网络的图像压缩模型(HPIC).在HPIC中,首先利用一个超先验概率模型对原始图像进行编码量化,将条件附加标签和残差模块相结合的生成器用于压缩图像的重建,基于深度卷积神经网络搭建的判别器则用于区分压缩后的图像和真实图像间的差异.损失函数是基于比特率-失真-感知优化理论来设计的,一方面选用基于预训练Inception网络特征值的感知失真指标来实现具有高感知质量的图像压缩重建,另一方面利用生成对抗网络损失来消除压缩伪影,提高压缩精度.实验结果表明,HPIC在比特率-失真-感知三重权衡中取得了较好的平衡,即使目前的常见算法使用两倍于本文算法的比特率,本文算法在所有的感知指标得分上均优于前者,HPIC仍能够实现具有高感知质量的压缩. 展开更多
关键词 图像压缩 比特率-失真-感知优化理论 条件生成对抗网络 损失函数
在线阅读 下载PDF
基于DCGAN-CNN的小样本通信干扰信号识别 被引量:1
16
作者 李程 陈明虎 +2 位作者 施育鑫 张宁松 胡凯 《无线电通信技术》 北大核心 2025年第1期70-79,共10页
在复杂电磁环境中,获取真实干扰信号样本会比较困难。针对该问题,提出了一种基于深度卷积生成对抗网络-卷积神经网络(Deep Convolution Generative Adversarial Network-Convolutional Neural Network,DCGAN-CNN)的小样本通信干扰信号... 在复杂电磁环境中,获取真实干扰信号样本会比较困难。针对该问题,提出了一种基于深度卷积生成对抗网络-卷积神经网络(Deep Convolution Generative Adversarial Network-Convolutional Neural Network,DCGAN-CNN)的小样本通信干扰信号识别方法。该方法利用DCGAN的生成对抗特性来扩充小样本通信干扰信号时的频图数据集,将真实样本与生成样本混合后,输入到CNN中进行训练识别,在DCGAN和CNN中引入学习率调度器,帮助模型更好地收敛。仿真结果表明,所提方法可有效提高小样本情况下通信干扰信号的识别率。 展开更多
关键词 通信抗干扰 通信干扰信号识别 小样本学习 深度卷积生成对抗网络-卷积神经网络
在线阅读 下载PDF
基于扩散生成对抗网络的文本生成图像模型研究 被引量:6
17
作者 赵宏 李文改 《电子与信息学报》 EI CSCD 北大核心 2023年第12期4371-4381,共11页
文本生成图像是一项结合计算机视觉(CV)和自然语言处理(NLP)领域的综合性任务。以生成对抗网络(GANs)为基础的方法在文本生成图像方面取得了显著进展,但GANs方法的模型存在训练不稳定的问题。为解决这一问题,该文提出一种基于扩散Wasser... 文本生成图像是一项结合计算机视觉(CV)和自然语言处理(NLP)领域的综合性任务。以生成对抗网络(GANs)为基础的方法在文本生成图像方面取得了显著进展,但GANs方法的模型存在训练不稳定的问题。为解决这一问题,该文提出一种基于扩散Wasserstein生成对抗网络(WGAN)的文本生成图像模型(D-WGAN)。在DWGAN中,利用向判别器中输入扩散过程中随机采样的实例噪声,在实现模型稳定训练的同时,生成高质量和多样性的图像。考虑到扩散过程的采样成本较高,引入一种随机微分的方法,以简化采样过程。为了进一步对齐文本与图像的信息,提出使用基于对比学习的语言-图像预训练模型(CLIP)获得文本与图像信息之间的跨模态映射关系,从而提升文本和图像的一致性。在MSCOCO,CUB-200数据集上的实验结果表明,D-WGAN在实现稳定训练的同时,与当前最好的方法相比,FID分数分别降低了16.43%和1.97%,IS分数分别提升了3.38%和30.95%,说明D-WGAN生成的图像质量更高,更具有实用价值。 展开更多
关键词 文本生成图像 生成对抗网络 扩散过程 对比学习的语言-图像预训练模型 语义匹配
在线阅读 下载PDF
小样本紫外-可见吸收光谱数据的COD测定方法
18
作者 郑培超 阮伟 +8 位作者 陈述斌 李海娟 侯艳 李成林 何浩楠 杨琴 王金梅 李彪 郭连波 《红外与激光工程》 北大核心 2025年第7期343-352,共10页
化学需氧量(Chemical Oxygen Demand,COD)浓度的精准预测在水质监测和环境保护中具有重要意义。然而,受限于样本量有限以及传统支持向量回归(Support Vector Regression,SVR)模型超参数调优计算复杂,紫外-可见(Ultraviolet-Visible,UV-V... 化学需氧量(Chemical Oxygen Demand,COD)浓度的精准预测在水质监测和环境保护中具有重要意义。然而,受限于样本量有限以及传统支持向量回归(Support Vector Regression,SVR)模型超参数调优计算复杂,紫外-可见(Ultraviolet-Visible,UV-Vis)吸收光谱在COD预测中的精度受到限制。为此,构建了适用于小样本条件的光谱数据优化策略。首先,通过核主成分分析(Kernel Principal Component Analysis,KPCA)提取光谱数据关键特征,提升数据处理效率;随后,利用基于梯度惩罚的Wasserstein生成对抗网络(Wasserstein Generative Adversarial Networks with Gradient Penalty,WGANGP)对关键特征进行数据增强,以缓解样本稀缺并提升模型对非线性关系的建模能力;最后采用牛顿-拉夫逊优化(Newton-Raphson-Based Optimizer,NRBO)实现SVR超参数的优化。实验结果表明,该方法在长江和嘉陵江水体COD预测中优于传统SVR,R^(2)从0.884 2提升至0.962 48,均方根误差(RMSE)降低36.34%,平均绝对误差(MAE)减少49.54%。该策略为光谱数据建模与水质污染监测提供了理论支持和实践依据。 展开更多
关键词 环境科学与工程 化学需氧量预测 Wasserstein生成对抗网络 紫外-可见吸收光谱 牛顿-拉夫逊优化算法 水质监测
在线阅读 下载PDF
基于循环生成对抗网络的图像去雾算法 被引量:7
19
作者 郭梦琰 张娟 +1 位作者 刘巧红 蔡立志 《计算机工程》 CAS CSCD 北大核心 2022年第3期280-287,共8页
大气散射模型与有雾图像及对应清晰图像间的映射模型不适配,导致使用大气散射模型进行图像去雾处理时,图像存在颜色偏差、纹理细节粗糙等问题。基于模拟生物视觉系统的反馈原理,提出一种端到端的循环生成对抗网络算法,以解决误差累积造... 大气散射模型与有雾图像及对应清晰图像间的映射模型不适配,导致使用大气散射模型进行图像去雾处理时,图像存在颜色偏差、纹理细节粗糙等问题。基于模拟生物视觉系统的反馈原理,提出一种端到端的循环生成对抗网络算法,以解决误差累积造成的去雾图像低质的问题。通过生成模块将循环神经网络的隐藏状态作为反馈信息,以指导低级模糊特征信息生成更加丰富的高级特征。循环结构能够保证先前的网络层可以使用到后面网络层的高级特征信息,从而减少误差累积。此外,该算法能够根据判别模块的损失来评估重建图像的质量。实验结果表明,与GCANet算法相比,所提算法在SOTS测试集上的平均峰值信噪比和结构相似性,在室内分别提升3.41%和0.57%,在室外分别提升3.48%和1.39%,且在真实世界的数据集上进行图像去雾后,在视觉上避免了颜色失真和光晕问题。 展开更多
关键词 图像去雾 循环卷积神经网络 生成对抗网络 编码-解码模式 反馈连接
在线阅读 下载PDF
基于生成对抗网络的漫画草稿图简化 被引量:12
20
作者 卢倩雯 陶青川 +1 位作者 赵娅琳 刘蔓霄 《自动化学报》 EI CSCD 北大核心 2018年第5期840-854,共15页
在漫画绘制的过程中,按草稿绘制出线条干净的线稿是很重要的一环.现有的草图简化方法已经具有一定的线条简化能力,然而由于草图的绘制方式的多样性以及画面复杂程度的不同,这些方法适用范围有限且效果不理想.本文提出了一种新颖的草图... 在漫画绘制的过程中,按草稿绘制出线条干净的线稿是很重要的一环.现有的草图简化方法已经具有一定的线条简化能力,然而由于草图的绘制方式的多样性以及画面复杂程度的不同,这些方法适用范围有限且效果不理想.本文提出了一种新颖的草图简化方法,利用条件随机场(Conditional random field,CRF)和最小二乘生成式对抗网络(Least squares generative adversarial networks,LSGAN)理论搭建了深度卷积神经网络的草图简化模型,通过该网络生成器与判别器之间的零和博弈与条件约束,得到更加接近真实的简化线稿图.同时,为了训练对抗模型的草图简化能力,本文建立了包含更多绘制方式与不同内容的草图与简化线稿图对的训练数据集.实验表明,本文算法对于复杂情况下的草图,相比于目前的方法,具有更好的简化效果. 展开更多
关键词 草图简化 最小二乘生成对抗网络 深度学习 条件随机场
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部