针对当前风电场发电功率预测时间较长、预测误差较大,易影响风力微电网根据用电负荷变化适时调度及有效电力资源配置的问题,提出了一种基于最小二乘支持向量机(least squares-support vector machine,LS-SVM)的微电网风电功率超短期预...针对当前风电场发电功率预测时间较长、预测误差较大,易影响风力微电网根据用电负荷变化适时调度及有效电力资源配置的问题,提出了一种基于最小二乘支持向量机(least squares-support vector machine,LS-SVM)的微电网风电功率超短期预测方法。该方法根据风电场数据采集与监视控制(supervisory control and data acquisition,SCADA)系统获取原始功率数据样本,经归一化法预处理,运用网格搜索法确定模型参数,并依据LS-SVM法建立预测系统模型,利用MATLAB工具箱LS-SVMLab进行仿真实验,跟踪及预测风电功率变化曲线,实现时间跨度小至5min的超短期预测。实验验证结果表明,该方法比传统预测方法具有较高的精确度和较大的适用性,为风力微电网优化调度控制工程提供一种新思路。展开更多
基于结构风险最小的最小二乘支持向量机(least squares support vector machine,LSSVM)为标准支持向量机(SVM)的约简,训练简易,性能良好。其模型精度受超参数影响,常规的网络搜索法很难搜得最佳超参数。在快速留一法的基础上,以全样本...基于结构风险最小的最小二乘支持向量机(least squares support vector machine,LSSVM)为标准支持向量机(SVM)的约简,训练简易,性能良好。其模型精度受超参数影响,常规的网络搜索法很难搜得最佳超参数。在快速留一法的基础上,以全样本留一预测误差平方和最小化为目标,导出基于梯度的最优化算法,用以优选为LSSVM超参数,进而构建G-LSSVM模型。以柠檬酸发酵过程为算例对G-LSSVM进行检验,结果表明G-LSSVM的超参数选取耗时少,模型稳定性良好,且拟合和预报性能都优于标准SVM和神经网络。有望适用于机理不明、高度非线性、小样本的化工过程建模。展开更多
文摘针对当前风电场发电功率预测时间较长、预测误差较大,易影响风力微电网根据用电负荷变化适时调度及有效电力资源配置的问题,提出了一种基于最小二乘支持向量机(least squares-support vector machine,LS-SVM)的微电网风电功率超短期预测方法。该方法根据风电场数据采集与监视控制(supervisory control and data acquisition,SCADA)系统获取原始功率数据样本,经归一化法预处理,运用网格搜索法确定模型参数,并依据LS-SVM法建立预测系统模型,利用MATLAB工具箱LS-SVMLab进行仿真实验,跟踪及预测风电功率变化曲线,实现时间跨度小至5min的超短期预测。实验验证结果表明,该方法比传统预测方法具有较高的精确度和较大的适用性,为风力微电网优化调度控制工程提供一种新思路。
文摘基于结构风险最小的最小二乘支持向量机(least squares support vector machine,LSSVM)为标准支持向量机(SVM)的约简,训练简易,性能良好。其模型精度受超参数影响,常规的网络搜索法很难搜得最佳超参数。在快速留一法的基础上,以全样本留一预测误差平方和最小化为目标,导出基于梯度的最优化算法,用以优选为LSSVM超参数,进而构建G-LSSVM模型。以柠檬酸发酵过程为算例对G-LSSVM进行检验,结果表明G-LSSVM的超参数选取耗时少,模型稳定性良好,且拟合和预报性能都优于标准SVM和神经网络。有望适用于机理不明、高度非线性、小样本的化工过程建模。