期刊文献+
共找到3,213篇文章
< 1 2 161 >
每页显示 20 50 100
基于改进金豺算法优化最小二乘法支持向量机的磨削表面粗糙度预测
1
作者 朱文博 张淑权 +1 位作者 张梦梦 迟玉伦 《表面技术》 北大核心 2025年第16期165-181,共17页
目的磨削过程中粗糙度直接影响产品质量,为有效预测工件磨削表面粗糙度,基于声发射和振动信号提出一种改进金豺算法(IGJO)优化最小二乘法支持向量(LSSVM)的磨削表面粗糙度预测方法。方法为增强信号特征与磨削表面粗糙度相关性,利用皮尔... 目的磨削过程中粗糙度直接影响产品质量,为有效预测工件磨削表面粗糙度,基于声发射和振动信号提出一种改进金豺算法(IGJO)优化最小二乘法支持向量(LSSVM)的磨削表面粗糙度预测方法。方法为增强信号特征与磨削表面粗糙度相关性,利用皮尔逊相关分析和主成分分析(PCA)对信号特征进行筛选,降低特征之间的多重共线性,降低模型复杂度;为改善磨削表面粗糙度预测模型的性能,对于金豺算法(GJO)易陷入局部最优问题,在GJO基础上引入佳点集初始化种群、非线性能量因子更新策略以及融合鲸鱼优化算法改进搜索策略,提升算法的初始种群多样性、收敛精度和全局搜索能力;为提高磨削表面粗糙度预测模型有效性,利用IGJO对LSSVM进行参数寻优,建立磨削表面粗糙度预测模型。结果通过轴承套圈内滚道磨削加工实验数据进行验证,结果表明IGJO-LSSVM磨削表面粗糙度预测模型能有效预测粗糙度值,预测精度为95.223%,RMSE值为0.0133,MAPE值为4.776%,R2值为0.956,均优于GJO-LSSVM、LSSVM和BP神经网络模型。结论通过IGJO优化后的LSSVM模型可实现磨削表面粗糙度有效预测,同时能够避免传统LSSVM容易陷入局部极小值的问题,对提高产品磨削质量具有重要意义。 展开更多
关键词 磨削表面粗糙度 轴承套圈 最小二乘法支持向量机 金豺算法
在线阅读 下载PDF
基于聚类与改进最小二乘法支持向量机算法的汽车总装输送装备故障预警方法 被引量:8
2
作者 钱晓明 王鑫豪 楼佩煌 《计算机集成制造系统》 EI CSCD 北大核心 2019年第12期3220-3225,共6页
汽车总装工艺复杂、生产节拍快、产量大,百分之六十以上的时间都在进行主辅物料输送,因此输送装备由于故障引起的停机会造成巨大的经济损失。为了对生产物料输送装备的健康状态作出评估,并在可能发生故障时作出预警,提出一种基于生长型... 汽车总装工艺复杂、生产节拍快、产量大,百分之六十以上的时间都在进行主辅物料输送,因此输送装备由于故障引起的停机会造成巨大的经济损失。为了对生产物料输送装备的健康状态作出评估,并在可能发生故障时作出预警,提出一种基于生长型神经气聚类算法与改进最小二乘法支持向量机(LS-SVM)回归模型的汽车总装输送装备故障预警方法。首先根据传感器的历史信号数据进行特征提取和降维处理,获得特征向量;运用生长型神经气聚类算法,将正常状态数据划分为多种工况,得到若干聚类中心,并计算当前运行数据的特征向量与聚类中心的欧式距离从而得到相似度趋势;同时构建了历史记忆矩阵,并通过改进粒子群算法优化LS-SVM回归模型参数,计算残差值,并结合残差值与相似度趋势,得出风险系数,对装备状态进行评估和预警。将所提方法应用于汽车总装物料输送设备,将减速器与轴承的振动值的均方根输入模型,得出设备的风险因子,证明了该方法的有效性。 展开更多
关键词 输送装备 故障预警 生长型神经气聚类算法 改进回归模型 最小二乘法支持向量机 汽车总装
在线阅读 下载PDF
基于遗传算法优化最小二乘法支持向量机的海上运输事故预测模型设计
3
作者 颜正恕 《舰船科学技术》 北大核心 2020年第14期199-201,共3页
随着我国经济和贸易的发展,海上航运的需求越来越高,针对海上运输的航运安全性问题引起了社会各界的广泛关注。海上运输事故的预测模型是指基于一定的数据基础,结合智能算法和数据分析技术,对一段时间内的船舶运输事故进行预测,并指导... 随着我国经济和贸易的发展,海上航运的需求越来越高,针对海上运输的航运安全性问题引起了社会各界的广泛关注。海上运输事故的预测模型是指基于一定的数据基础,结合智能算法和数据分析技术,对一段时间内的船舶运输事故进行预测,并指导海上交通管理。本文结合遗传算法和最小二乘法,同时利用支持向量机的数据分类技术,建立海上运输的事故预测模型,并详细介绍该预测模型的事故预测步骤。 展开更多
关键词 海上运输 遗传算法 最小乘法 支持向量
在线阅读 下载PDF
基于马氏距离的密度加权最小二乘孪生支持向量机
4
作者 吕莉 贺智鹏 +3 位作者 张法滢 张莹莹 康平 李院民 《江西师范大学学报(自然科学版)》 北大核心 2025年第1期37-48,共12页
最小二乘孪生支持向量机基于欧氏距离判断样本相似性并搭建模型的方法未考虑样本不同维度的方差差异对决策超平面位置的影响,导致模型处理此类样本精度不高且对噪声样本敏感.鉴于此,该文提出一种基于马氏距离的密度加权最小二乘孪生支... 最小二乘孪生支持向量机基于欧氏距离判断样本相似性并搭建模型的方法未考虑样本不同维度的方差差异对决策超平面位置的影响,导致模型处理此类样本精度不高且对噪声样本敏感.鉴于此,该文提出一种基于马氏距离的密度加权最小二乘孪生支持向量机.该算法利用马氏距离替换欧氏距离构造密度加权策略,充分考虑点与分布的关系,给予噪声数据较低的权重,降低算法对噪声的敏感性;同时结合马氏距离核函数计算样本内协方差矩阵,消除样本特征值之间方差的差异,更准确地体现样本间的相关性,从而优化决策超平面.实验采用人工数据集和UCI数据集,实验结果表明:该算法比同类型分类算法具有更高的分类精确度和泛化能力,能够有效区分在样本中的噪声数据并赋予合适的权重值,提升分类器的鲁棒性. 展开更多
关键词 支持向量 马氏距离 核函数 密度加权 最小乘损失函数
在线阅读 下载PDF
基于最小二乘支持向量机和车辆荷载监测数据的悬索桥吊索疲劳寿命预测 被引量:2
5
作者 曾国良 邓扬 《桥梁建设》 北大核心 2025年第1期41-48,共8页
针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数... 针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数据的相关性模型,建模过程中考虑LSSVM模型输入与输出的最优模式以及训练数据长度;建立1根吊索(以29号吊索为例)与其它吊索的日疲劳损伤之间的相关性模型,预测其它吊索的疲劳损伤;考虑日车流量和等效车总重的增长,进行吊索疲劳寿命预测。结果表明:对于29号吊索的4种LSSVM模型,模型Ⅳ的边界条件较其它3种模型更为合理,测试数据的平均相对误差低于模型Ⅰ~Ⅲ;该方法将日疲劳损伤与车辆荷载监测数据进行直接关联;LSSVM相关性模型的预测能力依赖于训练样本的数量,当训练数据长度为284 d时,模型Ⅳ的预测能力较强,其平均相对误差低于5.5%;同时考虑日车流量和等效车总重增长时,疲劳累积损伤显著增长。 展开更多
关键词 悬索桥 吊索 结构健康监测 车辆荷载 疲劳损伤 疲劳寿命 最小支持向量 相关性模型
在线阅读 下载PDF
基于最小二乘支持向量机解耦的无轴承磁通切换电机转子径向磁悬浮逆系统控制
6
作者 林佳泷 周扬忠 +1 位作者 陈东远 梁彤伟 《电工技术学报》 北大核心 2025年第14期4534-4546,共13页
针对无轴承磁通切换电机非线性、多变量、强耦合特性,该文提出一种转子径向磁悬浮解耦控制策略。首先,采用最小二乘支持向量机的方法对悬浮力模型中的耦合电磁力部分进行拟合补偿,实现悬浮系统初步解耦;然后,验证悬浮系统可逆性,并按照... 针对无轴承磁通切换电机非线性、多变量、强耦合特性,该文提出一种转子径向磁悬浮解耦控制策略。首先,采用最小二乘支持向量机的方法对悬浮力模型中的耦合电磁力部分进行拟合补偿,实现悬浮系统初步解耦;然后,验证悬浮系统可逆性,并按照逆系统理论设计伪线性复合悬浮系统,进一步实现了悬浮系统的线性化解耦;最后,对解耦后的悬浮系统设计闭环控制器,对悬浮闭环系统稳定性进行理论分析。实验结果验证,所提控制策略实现了无轴承磁通切换电机悬浮系统的动态解耦,提升了悬浮系统的动、静态性能。 展开更多
关键词 无轴承磁通切换电 逆系统 最小支持向量 径向磁悬浮 解耦控制
在线阅读 下载PDF
基于半监督学习结合最小二乘支持向量机的蝴蝶兰生长期最佳环境模型构建
7
作者 陈俞帆 白芮羽 +3 位作者 陈邦云 王华 敬勇 李亚硕 《农业工程》 2025年第4期38-42,共5页
蝴蝶兰是重要的观赏植物,生长环境对其生长发育具有显著影响。传统栽培方法多依赖经验,缺乏科学性和精准性。收集蝴蝶兰生长过程中的环境参数和生长状态指标,筛选关键特征,采用半监督学习结合最小二乘支持向量机方法,训练深度学习模型... 蝴蝶兰是重要的观赏植物,生长环境对其生长发育具有显著影响。传统栽培方法多依赖经验,缺乏科学性和精准性。收集蝴蝶兰生长过程中的环境参数和生长状态指标,筛选关键特征,采用半监督学习结合最小二乘支持向量机方法,训练深度学习模型用于预测蝴蝶兰生长最佳环境条件。通过自学习方法,模型能够从大量未标记样本中筛选出置信度高的样本,增加训练样本数量,提高模型的泛化能力和预测准确性。试验结果表明,当概率阈值设置为97%时,模型准确性最高,均方根误差3.974、决定系数0.975。该模型可为蝴蝶兰的科学栽培提供新的解决方案。 展开更多
关键词 半监督学习 最小支持向量 环境模型 蝴蝶兰 智慧农业
在线阅读 下载PDF
基于沙地猫群优化–最小二乘支持向量机的动态NOx排放预测 被引量:10
8
作者 金秀章 史德金 乔鹏 《中国电机工程学报》 EI CSCD 北大核心 2024年第1期182-190,I0015,共10页
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。... 针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。首先利用k近邻互信息计算时间延迟的同时筛选辅助变量。然后,基于SCSO算法进行输入变量阶次的选择。使用包含辅助变量时间延迟和阶次的信息作为模型的输入,SCSO算法优化最小二乘支持向量机参数,建立动态NOx排放最小二乘支持向量机预测模型(SCSO-LSSVM动态软测量模型)。最后将模型与未加入迟延的LSSVM模型,加入迟延的LSSVM模型和粒子群优化算法(particle swarm optimization,PSO)优化最小二乘支持向量机参数的动态软测量模型进行对比验证。结果表明,相较于其他模型,该文建立SCSO-LSSVM动态软测量模型均方根误差、平均绝对误差、平均绝对误差最小,预测精度最高,而且在NOx浓度剧烈波动时也能够较好地预测NOx浓度,具有很好的动态特性。 展开更多
关键词 NOx浓度 k近邻互信息 沙地猫群优化算法 最小支持向量 软测量模型
在线阅读 下载PDF
基于改进最小二乘支持向量机组合模型的深基坑沉降变形预测 被引量:10
9
作者 刘清龙 吕颖慧 +1 位作者 秦磊 赵鹏 《济南大学学报(自然科学版)》 CAS 北大核心 2024年第1期8-14,共7页
为了提高深基坑沉降变形预测精度,及时为深基坑支护施工提供指导,提出一种改进最小二乘支持向量机组合模型;通过引入自适应噪声完备集合经验模态分解方法分解原始深基坑沉降变形数据,并结合粒子群优化算法和遗传算法对最小二乘支持向量... 为了提高深基坑沉降变形预测精度,及时为深基坑支护施工提供指导,提出一种改进最小二乘支持向量机组合模型;通过引入自适应噪声完备集合经验模态分解方法分解原始深基坑沉降变形数据,并结合粒子群优化算法和遗传算法对最小二乘支持向量机进行参数寻优,对分解的数据分别训练、预测后再叠加,得到最终预测结果;应用所提出模型对济南市某深基坑的累积沉降量进行预测,同时与其他模型对比,验证所提出模型的实用性和优越性。结果表明:所提出模型预测深基坑累积沉降量的平均相对误差为0.035%,均方误差为0.0809 mm^(2),均方根误差为0.2838 mm,所提出模型的准确性远优于其他模型的;自适应噪声完备集合经验模态分解方法的引入更有利于在深基坑沉降变形预测方面发挥最小二乘支持向量机的优势。 展开更多
关键词 深基坑沉降变形 最小支持向量 经验模态分解 粒子群优化算法 遗传算法
在线阅读 下载PDF
基于遗传算法优化最小二乘支持向量机的矿工疲劳程度识别模型 被引量:2
10
作者 田水承 任治鹏 毛俊睿 《矿业安全与环保》 CAS 北大核心 2024年第4期110-116,共7页
为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后... 为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后,采用主成分分析法对选取的特征指标进行降维处理,建立表征矿工疲劳程度的特征集;在此基础上,利用遗传算法优化最小二乘支持向量机的关键参数,构建矿工疲劳程度识别模型。结果表明:选取的矿工疲劳程度特征指标能够有效反映矿工的疲劳程度;相较GA-SVM和LSSVM模型,融合GA-LSSVM模型可显著提高矿工疲劳程度的识别准确率(平均识别准确率为96.87%)。构建的矿工疲劳程度识别模型可较为高效地识别矿工的疲劳程度,对煤矿人因事故的防控具有一定的现实指导意义。 展开更多
关键词 矿工 疲劳识别 心电信号 最小支持向量 遗传算法
在线阅读 下载PDF
基于粒子群优化和最小二乘支持向量机的储罐腐蚀速率预测 被引量:3
11
作者 王明慧 党鹏飞 +1 位作者 杨铮鑫 龚博 《腐蚀与防护》 CAS CSCD 北大核心 2024年第8期71-76,共6页
利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。... 利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。结果表明:使用PSOLSSVM获得的腐蚀速率预测结果与实际腐蚀速率较为吻合,罐顶、第一层罐壁、罐底预测结果的平均绝对百分误差分别为2.265%、3.077%、1.18%,均方根误差分别为0.010%、0.012%、0.011%,决定系数分别为0.973、0.982、0.976。该方法可以对储罐内腐蚀速率进行有效的预测。 展开更多
关键词 粒子群优化(PSO) 最小支持向量(LSSVM) 腐蚀速率预测
在线阅读 下载PDF
基于聚类分析与偏最小二乘法的支持向量机PM_(2.5)预测 被引量:7
12
作者 喻其炳 李勇 +3 位作者 白云 姚行艳 成志伟 李川 《环境科学与技术》 CAS CSCD 北大核心 2017年第6期157-164,共8页
考虑样本和输入变量的选取对预测模型精度的影响,文章提出一种基于K-means聚类与偏最小二乘法的支持向量机PM_(2.5)浓度预测方法。首先采用K-means算法对气象属性进行聚类,间接把PM_(2.5)序列分成了相似度较高的若干类,并分别作为预测... 考虑样本和输入变量的选取对预测模型精度的影响,文章提出一种基于K-means聚类与偏最小二乘法的支持向量机PM_(2.5)浓度预测方法。首先采用K-means算法对气象属性进行聚类,间接把PM_(2.5)序列分成了相似度较高的若干类,并分别作为预测建模用的训练样本;然后采用偏最小二乘法从影响PM_(2.5)浓度的多种因素中提取主成分,作为各类模型的优化输入;最后根据预测日的气象属性选出合适类别,运用优化后的训练样本和输入变量建立PM_(2.5)浓度预测模型。以北京市某监测点的实际数据为例,运用改进模型和传统模型分别进行实验。结果表明:改进的支持向量机相比传统支持向量机在预测精度上有明显的提高,精度评价指标MAE、MAPE和RMSE分别下降38.10%、50.59%、37.15%。研究实证,引入K-means聚类与偏最小二乘法的手段来提高传统支持向量机在PM_(2.5)浓度预测中的精度具有可行性。 展开更多
关键词 K-MEANS聚类 最小乘法 支持向量 PM2.5浓度预测
在线阅读 下载PDF
结合偏最小二乘法和支持向量机的遥感影像变化检测 被引量:9
13
作者 黄杰 王光辉 +3 位作者 杨化超 胡高强 李建磊 柴文慧 《测绘通报》 CSCD 北大核心 2016年第7期35-38,共4页
针对多光谱遥感影像通道之间相关性影响难以消除及变化检测的阈值难以确定的问题,提出了一种结合偏最小二乘法(PLS)和支持向量机(SVM)的遥感影像变化检测方法。将两个时相的多通道遥感影像视为两组多元随机变量,引入多元统计数据分析方... 针对多光谱遥感影像通道之间相关性影响难以消除及变化检测的阈值难以确定的问题,提出了一种结合偏最小二乘法(PLS)和支持向量机(SVM)的遥感影像变化检测方法。将两个时相的多通道遥感影像视为两组多元随机变量,引入多元统计数据分析方法中的PLS理论,进行成分提取并构造差异影像;再通过SVM将差异影像分为变化与不变化两类别;最后利用形态学算子对分类结果作处理。选取Landsat8多光谱遥感影像进行试验,结果表明该方法可以很好地实现多光谱影像的变化检测,对地理国情数据监测具有重要意义。 展开更多
关键词 多光谱影像 最小乘法 支持向量 变化检测 多重相关性
在线阅读 下载PDF
基于偏最小二乘法的支持向量机短期负荷预测 被引量:14
14
作者 浦星材 沈晓风 +1 位作者 张清扬 邓玉章 《电网与清洁能源》 2011年第10期32-35,42,共5页
提出了一种基于偏最小二乘支持向量机的负荷预测模型。首先通过偏最小二乘(PLS)对负荷数据进行成分提取,提取的成分具有线性特点,并消除输入因素的多重相关性,然后采用支持向量机方法(SVM)对提取的成分进行预测。算例表明,该算法用于短... 提出了一种基于偏最小二乘支持向量机的负荷预测模型。首先通过偏最小二乘(PLS)对负荷数据进行成分提取,提取的成分具有线性特点,并消除输入因素的多重相关性,然后采用支持向量机方法(SVM)对提取的成分进行预测。算例表明,该算法用于短期负荷预测建模速度快,预测精度高,是种行之有效的方法。 展开更多
关键词 负荷预测 支持向量 最小
在线阅读 下载PDF
增量式最小二乘法分类器与增量式支持向量机的对比 被引量:3
15
作者 朱真峰 郭跃飞 薛向阳 《小型微型计算机系统》 CSCD 北大核心 2011年第3期493-498,共6页
在处理大规模数据时,近似支持向量机及其增量式版本(ISVM)是一种比传统支持向量机更加简单而有效的分类器.但在处理高维数据时,由于ISVM通过计算矩阵的逆来更新模型参数,这使得其计算效果有待提高.针对上述问题,本文提出了基于最小二乘... 在处理大规模数据时,近似支持向量机及其增量式版本(ISVM)是一种比传统支持向量机更加简单而有效的分类器.但在处理高维数据时,由于ISVM通过计算矩阵的逆来更新模型参数,这使得其计算效果有待提高.针对上述问题,本文提出了基于最小二乘法的增量式方法.该增量式方法通过对矩阵运算的恒等推导,把矩阵求逆问题转变成了除法运算,得到了简单的模型参数更新公式,从而获得了和ISVM同样的预测精度,且在处理高维数据时运行效率更高.在合成数据及图像和生物数据上的试验表明该增量式方法优于ISVM方法. 展开更多
关键词 监督学习 增量式学习 增量式近似支持向量 高维 增量式最小乘法
在线阅读 下载PDF
基于最小二乘支持向量机的农村土地利用空间优化配置方法及实例分析 被引量:3
16
作者 黄晓磊 冯长委 《现代农业科技》 2024年第8期185-188,共4页
因为农村各类用地数据具有样本小、非线性等特点,导致土地利用空间配置结果的适宜性较差,所以本文提出基于最小二乘支持向量机的农村土地利用空间优化配置方法。基于最小二乘支持向量机预测农村土地利用空间格局,得到各类用地面积数据,... 因为农村各类用地数据具有样本小、非线性等特点,导致土地利用空间配置结果的适宜性较差,所以本文提出基于最小二乘支持向量机的农村土地利用空间优化配置方法。基于最小二乘支持向量机预测农村土地利用空间格局,得到各类用地面积数据,对各类用地进行满足经济效益与生态效益最大化的多目标函数的优化配置。实例结果表明,农村土地利用空间优化配置结果中各用地类型高度适宜区域的面积占比均超过75%,证实了设计方法的合理性。 展开更多
关键词 最小支持向量 农村土地 土地利用 空间优化配置
在线阅读 下载PDF
基于最小二乘支持向量机的国公酒中橙皮苷含量测定 被引量:11
17
作者 朱向荣 单杨 +4 位作者 李高阳 范强 史新元 乔延江 张卓勇 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2009年第9期2471-2474,共4页
应用近红外光谱技术结合最小二乘支持向量机建立了国公酒中橙皮苷含量的模型。利用Kemard-Stone法对训练集样本进行划分,对光谱数据预处理方法进行了选择,比较了平滑、范围标度化、自标度化、一阶微分、二阶微分以及这几种预处理相互... 应用近红外光谱技术结合最小二乘支持向量机建立了国公酒中橙皮苷含量的模型。利用Kemard-Stone法对训练集样本进行划分,对光谱数据预处理方法进行了选择,比较了平滑、范围标度化、自标度化、一阶微分、二阶微分以及这几种预处理相互结合的六种方法,确定了以平滑、一阶微分,范围标度化作为国公酒近红外光谱的数据预处理方法,采用组合的间隔偏最小二乘法筛选出有效波段8211~8312cm^-1及9712~9808cm-1。应用最小二乘支持向量机建立模型,所建模型的交叉验证误差均方根为0.0001,预测误差均方根为0.004,预测集的相对偏差小于5%。与组合的间隔偏最小二乘法、径向基一人工神经网络和支持向量机进行了比较。该方法快速、无损且可靠,可作为国公酒中橙皮苷含量快速测定的手段。 展开更多
关键词 国公酒 橙皮苷 近红外光谱 最小二乘法支持向量机
在线阅读 下载PDF
一种稳健最小二乘支持向量机GNSS-IR土壤湿度反演方法
18
作者 王式太 蒋威 +2 位作者 杨可心 马岳 姜新伟 《遥感信息》 CSCD 北大核心 2024年第2期43-51,共9页
全球卫星导航系统干涉测量(global navigation satellite system interferometric reflectometry,GNSS-IR)是一种新型的遥感技术,可利用多径信噪比序列的延迟相位值反演土壤湿度值,其延迟相位求解通常使用信赖域算法,该算法一定程度依... 全球卫星导航系统干涉测量(global navigation satellite system interferometric reflectometry,GNSS-IR)是一种新型的遥感技术,可利用多径信噪比序列的延迟相位值反演土壤湿度值,其延迟相位求解通常使用信赖域算法,该算法一定程度依赖初值设定。文章先使用遗传算法求解出延迟相位粗略值,再将该数值作为信赖域的初值用于迭代计算,提升了部分卫星延迟相位的求解精度及稳定性。此外,针对多径信噪比序列易受环境因素影响引入粗差,进而影响模型反演精度,文章采用稳健最小二乘支持向量机作为反演模型,同时又考虑到多星融合的时空尺度优势,将该模型分别做了单星反演至五星融合反演,并与最小二乘支持向量机模型做对比。分析结果表明,当三星融合时该模型提升精度最为明显,MAE最高可降低15.6%,RMSE最高可降低12.0%。 展开更多
关键词 GNSS-IR 土壤湿度 遗传算法 多卫星融合 稳健最小支持向量
在线阅读 下载PDF
双链DNA解链温度的最小二乘支持向量机预测方法 被引量:2
19
作者 李金松 张强 周士华 《计算机工程与应用》 CSCD 北大核心 2009年第5期55-58,共4页
在DNA计算中,为了确保计算结果的精度和可靠性,要求每个进行编码的DNA分子具有相同或者近似的热力学性质,解链温度Tm是评价DNA分子的热力学稳定性的一个重要的参数。以DNA序列的邻近法参数为基础,应用最小二乘支持向量机(LSSVM)的方法... 在DNA计算中,为了确保计算结果的精度和可靠性,要求每个进行编码的DNA分子具有相同或者近似的热力学性质,解链温度Tm是评价DNA分子的热力学稳定性的一个重要的参数。以DNA序列的邻近法参数为基础,应用最小二乘支持向量机(LSSVM)的方法对解链温度进行预测。结果表明,DNA序列的解链温度误差可以达到±5℃的范围。 展开更多
关键词 邻近法模型 解链温度 最小二乘法支持向量机(LSSVM) DNA计算
在线阅读 下载PDF
梯度提升最小二乘支持向量回归的压电执行器磁滞特性建模 被引量:1
20
作者 王建成 李强亚 +2 位作者 刘涛 谭永红 阎帅 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第9期1692-1697,共6页
针对用于精密运动定位的压电执行器具有磁滞效应的问题,本文提出一种基于梯度提升最小二乘支持向量回归(GB-LSSVR)的建模方法.首先,通过引入磁滞算子构造拓展的输入空间,将磁滞的多值映射转换为一对一映射.然后,建立基于GB-LSSVR的磁滞... 针对用于精密运动定位的压电执行器具有磁滞效应的问题,本文提出一种基于梯度提升最小二乘支持向量回归(GB-LSSVR)的建模方法.首先,通过引入磁滞算子构造拓展的输入空间,将磁滞的多值映射转换为一对一映射.然后,建立基于GB-LSSVR的磁滞模型,设计可保证收敛粒子群算法(GCPSO)对GB-LSSVR模型参数进行优化.最后,将所提出方法用于实际预测一个压电执行器的位移.结果表明,该方法相对于经典的最小二乘支持向量回归(LSSVR)和截断最小二乘支持向量回归(T-LSSVR)算法,能得到更加准确的结果. 展开更多
关键词 压电执行器 磁滞效应 磁滞算子 最小支持向量 可保证收敛粒子群算法 梯度提升
在线阅读 下载PDF
上一页 1 2 161 下一页 到第
使用帮助 返回顶部