本文给出一种新的类似于RLS(recursive least squares)算法的递推最小二乘算法,该算法直接对输入信号的相关函数进行处理而不是对输入信号本身进行处理, 理论分析表明了该算法的收敛性。该算法应用于回波消除问题中,克服了常规自适应滤...本文给出一种新的类似于RLS(recursive least squares)算法的递推最小二乘算法,该算法直接对输入信号的相关函数进行处理而不是对输入信号本身进行处理, 理论分析表明了该算法的收敛性。该算法应用于回波消除问题中,克服了常规自适应滤波算法在出现双方对讲的情况下需停止调节自适应滤波器系数这一不足。计算机模拟仿真表明该算法在双方对讲的情况下有良好的收敛性能。展开更多
文摘本文给出一种新的类似于RLS(recursive least squares)算法的递推最小二乘算法,该算法直接对输入信号的相关函数进行处理而不是对输入信号本身进行处理, 理论分析表明了该算法的收敛性。该算法应用于回波消除问题中,克服了常规自适应滤波算法在出现双方对讲的情况下需停止调节自适应滤波器系数这一不足。计算机模拟仿真表明该算法在双方对讲的情况下有良好的收敛性能。
文摘针对复杂噪声环境下的参数估计问题,提出了一种稳健的自适应序贯M估计算法(Adaptive RecursiveM-Estimation,ARME),并从理论分析和Monte Carlo实验仿真两方面分析了该算法的收敛性、渐进无偏特性和稳健性.理论分析和仿真试验表明:在高斯白噪声背景下,ARME具有与序贯最小二乘算法(Recursive Least Square,RLS)相近的性能;在有突出干扰等非高斯噪声背景下,与RLS相比,ARME的参数估计收敛速度更快,估计误差更小,而且在稳健性上大大优于RLS.