期刊文献+
共找到3,542篇文章
< 1 2 178 >
每页显示 20 50 100
动力电池SOC估算的模糊最小二乘支持向量机法 被引量:4
1
作者 朱浩 高利琴 钱承 《电源技术》 CAS CSCD 北大核心 2013年第5期797-799,共3页
提出了应用模糊最小二乘支持向量机的方法对电池组的剩余电量(SOC)进行估算。为了与实际情况相一致,采用了prius车型在10-15典型工况下采集的电池在变电流充放电状态下的数据,以电池的工作电压、电流及温度为输入,电池SOC为输出建立了... 提出了应用模糊最小二乘支持向量机的方法对电池组的剩余电量(SOC)进行估算。为了与实际情况相一致,采用了prius车型在10-15典型工况下采集的电池在变电流充放电状态下的数据,以电池的工作电压、电流及温度为输入,电池SOC为输出建立了估算模型,使估算的最大误差小于1%,估算精度高,为一种有效的改进SOC实时估算的方法,此方法尤其适用于电动汽车变电流充放电状态。 展开更多
关键词 电动汽车 电池SOC估算 模糊最小乘支持向量
在线阅读 下载PDF
遗传最小二乘支持向量机法预测时用水量 被引量:15
2
作者 陈磊 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第6期1100-1103,共4页
为解决传统最小二乘支持向量机采用交叉验证确定参数耗时较长的问题,提出基于遗传算法和最小二乘支持向量机的城市时用水量预测方法.根据城市时用水量序列具有较强相关性的特点,利用自相关系数法分析时用水量序列的变化规律,并引入二进... 为解决传统最小二乘支持向量机采用交叉验证确定参数耗时较长的问题,提出基于遗传算法和最小二乘支持向量机的城市时用水量预测方法.根据城市时用水量序列具有较强相关性的特点,利用自相关系数法分析时用水量序列的变化规律,并引入二进制编码的自适应遗传算法优化最小二乘支持向量机的超参数,采用交叉验证法确定遗传算法个体的适应值,建立了时用水量预测模型.实例分析表明:与基于传统最小二乘支持向量机的时用水量预测方法相比,基于遗传算法和最小二乘支持向量机的时用水量预测方法计算速度更快,预测精度更高. 展开更多
关键词 遗传算 最小乘支持向量 时用水量 相关分析
在线阅读 下载PDF
混沌遗传最小二乘支持向量机法预测日用水量 被引量:2
3
作者 陈磊 余翔 《节水灌溉》 北大核心 2012年第9期4-7,共4页
利用混沌运动的初值敏感性、内在随机性和遍历性的特点,提出基于混沌遗传算法和最小二乘支持向量机的城市日用水量预测法。通过混沌映射搜索自适应遗传算法的较优初始种群,采用自适应遗传算法优化最小二乘支持向量机的超参数,利用交叉... 利用混沌运动的初值敏感性、内在随机性和遍历性的特点,提出基于混沌遗传算法和最小二乘支持向量机的城市日用水量预测法。通过混沌映射搜索自适应遗传算法的较优初始种群,采用自适应遗传算法优化最小二乘支持向量机的超参数,利用交叉验证法确定遗传算法个体的适应值,建立基于最小二乘支持向量机的日用水量预测模型。实例分析结果表明,与基于遗传最小二乘支持向量机的日用水量预测法相比,提出的预测方法具有更高的预测精度。 展开更多
关键词 遗传算 混沌 最小乘支持向量 日用水量
在线阅读 下载PDF
变结构遗传最小二乘支持向量机法预测日用水量 被引量:2
4
作者 陈磊 石也 《浙江工业大学学报》 CAS 北大核心 2017年第1期69-72,共4页
为解决日用水量预测模型的动态参数估计问题,提出了基于变结构遗传最小二乘支持向量机的预测模型.以日用水量的主要影响因素和相关日用水量为输入,利用遗传算法对基于LSSVM的历史日用水量模型参数进行寻优,获得模型结构参数序列;采用扩... 为解决日用水量预测模型的动态参数估计问题,提出了基于变结构遗传最小二乘支持向量机的预测模型.以日用水量的主要影响因素和相关日用水量为输入,利用遗传算法对基于LSSVM的历史日用水量模型参数进行寻优,获得模型结构参数序列;采用扩展卡尔曼滤波器估计基于最小二乘支持向量机的预测日用水量模型参数,进而预测下一日用水量.实例分析表明:提出的模型具有较高的预测精度,预测的最大绝对相对误差仅为9.3%,平均绝对相对误差为2.09%. 展开更多
关键词 遗传算 最小乘支持向量 变结构 扩展卡尔曼滤波 日用水量
在线阅读 下载PDF
差分进化最小二乘支持向量机法预测日用水量 被引量:5
5
作者 陈磊 陈李 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2018年第8期83-87,共5页
为解决最小二乘支持向量机的参数确定问题,提出采用自适应差分进化最小二乘支持向量机法预测日用水量.引入改进粗糙集算法分析日用水量主要影响因素,利用自相关系数法确定序列的相关性,并将自适应差分进化算法(SADE)用于优化最小二乘支... 为解决最小二乘支持向量机的参数确定问题,提出采用自适应差分进化最小二乘支持向量机法预测日用水量.引入改进粗糙集算法分析日用水量主要影响因素,利用自相关系数法确定序列的相关性,并将自适应差分进化算法(SADE)用于优化最小二乘支持向量机(LSSVM)的参数,建立了基于SADELSSVM的预测模型.结果表明,与传统差分进化算法(DE)和自适应遗传算法(SAGA)相比,SADE具有更快的最优个体搜索速度和群体进化速度,与基于SAGALSSVM和基于DELSSVM的模型相比,本文提出模型的预测能力更强. 展开更多
关键词 自适应差分进化 最小乘支持向量 管网 日用水量
在线阅读 下载PDF
非线性系统载荷识别的最小二乘支持向量机法 被引量:3
6
作者 周盼 辛江慧 丁继才 《噪声与振动控制》 CSCD 北大核心 2021年第5期9-13,37,共6页
为解除载荷识别问题对原系统先验知识的依赖,提出采用最小二乘支持向量机(Least squares support vector machine,LS-SVM)对非线性系统进行逆模型辨识,随后在该逆模型基础上利用工作状态的响应数据识别时域载荷。通过对某一非线性系统... 为解除载荷识别问题对原系统先验知识的依赖,提出采用最小二乘支持向量机(Least squares support vector machine,LS-SVM)对非线性系统进行逆模型辨识,随后在该逆模型基础上利用工作状态的响应数据识别时域载荷。通过对某一非线性系统的稳态和非稳态激励的仿真计算,验证该方法的有效性。仿真结果表明LS-SVM能够辨识出可靠的非线性系统的逆模型,进而反演出较精确的时域载荷。该方法不需要了解系统的数学模型及参数,只需少量训练样本即可,因此该方法能够较好地应用于工程实践中。 展开更多
关键词 振动与波 最小乘支持向量 逆模型辨识 非线性系统 载荷识别
在线阅读 下载PDF
基于改进金豺算法优化最小二乘法支持向量机的磨削表面粗糙度预测
7
作者 朱文博 张淑权 +1 位作者 张梦梦 迟玉伦 《表面技术》 北大核心 2025年第16期165-181,共17页
目的磨削过程中粗糙度直接影响产品质量,为有效预测工件磨削表面粗糙度,基于声发射和振动信号提出一种改进金豺算法(IGJO)优化最小二乘法支持向量(LSSVM)的磨削表面粗糙度预测方法。方法为增强信号特征与磨削表面粗糙度相关性,利用皮尔... 目的磨削过程中粗糙度直接影响产品质量,为有效预测工件磨削表面粗糙度,基于声发射和振动信号提出一种改进金豺算法(IGJO)优化最小二乘法支持向量(LSSVM)的磨削表面粗糙度预测方法。方法为增强信号特征与磨削表面粗糙度相关性,利用皮尔逊相关分析和主成分分析(PCA)对信号特征进行筛选,降低特征之间的多重共线性,降低模型复杂度;为改善磨削表面粗糙度预测模型的性能,对于金豺算法(GJO)易陷入局部最优问题,在GJO基础上引入佳点集初始化种群、非线性能量因子更新策略以及融合鲸鱼优化算法改进搜索策略,提升算法的初始种群多样性、收敛精度和全局搜索能力;为提高磨削表面粗糙度预测模型有效性,利用IGJO对LSSVM进行参数寻优,建立磨削表面粗糙度预测模型。结果通过轴承套圈内滚道磨削加工实验数据进行验证,结果表明IGJO-LSSVM磨削表面粗糙度预测模型能有效预测粗糙度值,预测精度为95.223%,RMSE值为0.0133,MAPE值为4.776%,R2值为0.956,均优于GJO-LSSVM、LSSVM和BP神经网络模型。结论通过IGJO优化后的LSSVM模型可实现磨削表面粗糙度有效预测,同时能够避免传统LSSVM容易陷入局部极小值的问题,对提高产品磨削质量具有重要意义。 展开更多
关键词 磨削表面粗糙度 轴承套圈 最小二乘支持向量 金豺算
在线阅读 下载PDF
基于马氏距离的密度加权最小二乘孪生支持向量机
8
作者 吕莉 贺智鹏 +3 位作者 张法滢 张莹莹 康平 李院民 《江西师范大学学报(自然科学版)》 北大核心 2025年第1期37-48,共12页
最小二乘孪生支持向量机基于欧氏距离判断样本相似性并搭建模型的方法未考虑样本不同维度的方差差异对决策超平面位置的影响,导致模型处理此类样本精度不高且对噪声样本敏感.鉴于此,该文提出一种基于马氏距离的密度加权最小二乘孪生支... 最小二乘孪生支持向量机基于欧氏距离判断样本相似性并搭建模型的方法未考虑样本不同维度的方差差异对决策超平面位置的影响,导致模型处理此类样本精度不高且对噪声样本敏感.鉴于此,该文提出一种基于马氏距离的密度加权最小二乘孪生支持向量机.该算法利用马氏距离替换欧氏距离构造密度加权策略,充分考虑点与分布的关系,给予噪声数据较低的权重,降低算法对噪声的敏感性;同时结合马氏距离核函数计算样本内协方差矩阵,消除样本特征值之间方差的差异,更准确地体现样本间的相关性,从而优化决策超平面.实验采用人工数据集和UCI数据集,实验结果表明:该算法比同类型分类算法具有更高的分类精确度和泛化能力,能够有效区分在样本中的噪声数据并赋予合适的权重值,提升分类器的鲁棒性. 展开更多
关键词 支持向量 马氏距离 核函数 密度加权 最小二乘损失函数
在线阅读 下载PDF
基于最小二乘支持向量机和车辆荷载监测数据的悬索桥吊索疲劳寿命预测 被引量:1
9
作者 曾国良 邓扬 《桥梁建设》 北大核心 2025年第1期41-48,共8页
针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数... 针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数据的相关性模型,建模过程中考虑LSSVM模型输入与输出的最优模式以及训练数据长度;建立1根吊索(以29号吊索为例)与其它吊索的日疲劳损伤之间的相关性模型,预测其它吊索的疲劳损伤;考虑日车流量和等效车总重的增长,进行吊索疲劳寿命预测。结果表明:对于29号吊索的4种LSSVM模型,模型Ⅳ的边界条件较其它3种模型更为合理,测试数据的平均相对误差低于模型Ⅰ~Ⅲ;该方法将日疲劳损伤与车辆荷载监测数据进行直接关联;LSSVM相关性模型的预测能力依赖于训练样本的数量,当训练数据长度为284 d时,模型Ⅳ的预测能力较强,其平均相对误差低于5.5%;同时考虑日车流量和等效车总重增长时,疲劳累积损伤显著增长。 展开更多
关键词 悬索桥 吊索 结构健康监测 车辆荷载 疲劳损伤 疲劳寿命 最小乘支持向量 相关性模型
在线阅读 下载PDF
基于最小二乘支持向量机解耦的无轴承磁通切换电机转子径向磁悬浮逆系统控制
10
作者 林佳泷 周扬忠 +1 位作者 陈东远 梁彤伟 《电工技术学报》 北大核心 2025年第14期4534-4546,共13页
针对无轴承磁通切换电机非线性、多变量、强耦合特性,该文提出一种转子径向磁悬浮解耦控制策略。首先,采用最小二乘支持向量机的方法对悬浮力模型中的耦合电磁力部分进行拟合补偿,实现悬浮系统初步解耦;然后,验证悬浮系统可逆性,并按照... 针对无轴承磁通切换电机非线性、多变量、强耦合特性,该文提出一种转子径向磁悬浮解耦控制策略。首先,采用最小二乘支持向量机的方法对悬浮力模型中的耦合电磁力部分进行拟合补偿,实现悬浮系统初步解耦;然后,验证悬浮系统可逆性,并按照逆系统理论设计伪线性复合悬浮系统,进一步实现了悬浮系统的线性化解耦;最后,对解耦后的悬浮系统设计闭环控制器,对悬浮闭环系统稳定性进行理论分析。实验结果验证,所提控制策略实现了无轴承磁通切换电机悬浮系统的动态解耦,提升了悬浮系统的动、静态性能。 展开更多
关键词 无轴承磁通切换电 逆系统 最小乘支持向量 径向磁悬浮 解耦控制
在线阅读 下载PDF
基于半监督学习结合最小二乘支持向量机的蝴蝶兰生长期最佳环境模型构建
11
作者 陈俞帆 白芮羽 +3 位作者 陈邦云 王华 敬勇 李亚硕 《农业工程》 2025年第4期38-42,共5页
蝴蝶兰是重要的观赏植物,生长环境对其生长发育具有显著影响。传统栽培方法多依赖经验,缺乏科学性和精准性。收集蝴蝶兰生长过程中的环境参数和生长状态指标,筛选关键特征,采用半监督学习结合最小二乘支持向量机方法,训练深度学习模型... 蝴蝶兰是重要的观赏植物,生长环境对其生长发育具有显著影响。传统栽培方法多依赖经验,缺乏科学性和精准性。收集蝴蝶兰生长过程中的环境参数和生长状态指标,筛选关键特征,采用半监督学习结合最小二乘支持向量机方法,训练深度学习模型用于预测蝴蝶兰生长最佳环境条件。通过自学习方法,模型能够从大量未标记样本中筛选出置信度高的样本,增加训练样本数量,提高模型的泛化能力和预测准确性。试验结果表明,当概率阈值设置为97%时,模型准确性最高,均方根误差3.974、决定系数0.975。该模型可为蝴蝶兰的科学栽培提供新的解决方案。 展开更多
关键词 半监督学习 最小乘支持向量 环境模型 蝴蝶兰 智慧农业
在线阅读 下载PDF
基于遗传算法优化最小二乘支持向量机的矿工疲劳程度识别模型 被引量:2
12
作者 田水承 任治鹏 毛俊睿 《矿业安全与环保》 CAS 北大核心 2024年第4期110-116,共7页
为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后... 为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后,采用主成分分析法对选取的特征指标进行降维处理,建立表征矿工疲劳程度的特征集;在此基础上,利用遗传算法优化最小二乘支持向量机的关键参数,构建矿工疲劳程度识别模型。结果表明:选取的矿工疲劳程度特征指标能够有效反映矿工的疲劳程度;相较GA-SVM和LSSVM模型,融合GA-LSSVM模型可显著提高矿工疲劳程度的识别准确率(平均识别准确率为96.87%)。构建的矿工疲劳程度识别模型可较为高效地识别矿工的疲劳程度,对煤矿人因事故的防控具有一定的现实指导意义。 展开更多
关键词 矿工 疲劳识别 心电信号 最小乘支持向量 遗传算
在线阅读 下载PDF
基于最小二乘支持向量机的农村土地利用空间优化配置方法及实例分析 被引量:3
13
作者 黄晓磊 冯长委 《现代农业科技》 2024年第8期185-188,共4页
因为农村各类用地数据具有样本小、非线性等特点,导致土地利用空间配置结果的适宜性较差,所以本文提出基于最小二乘支持向量机的农村土地利用空间优化配置方法。基于最小二乘支持向量机预测农村土地利用空间格局,得到各类用地面积数据,... 因为农村各类用地数据具有样本小、非线性等特点,导致土地利用空间配置结果的适宜性较差,所以本文提出基于最小二乘支持向量机的农村土地利用空间优化配置方法。基于最小二乘支持向量机预测农村土地利用空间格局,得到各类用地面积数据,对各类用地进行满足经济效益与生态效益最大化的多目标函数的优化配置。实例结果表明,农村土地利用空间优化配置结果中各用地类型高度适宜区域的面积占比均超过75%,证实了设计方法的合理性。 展开更多
关键词 最小乘支持向量 农村土地 土地利用 空间优化配置
在线阅读 下载PDF
基于沙地猫群优化–最小二乘支持向量机的动态NOx排放预测 被引量:6
14
作者 金秀章 史德金 乔鹏 《中国电机工程学报》 EI CSCD 北大核心 2024年第1期182-190,I0015,共10页
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。... 针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。首先利用k近邻互信息计算时间延迟的同时筛选辅助变量。然后,基于SCSO算法进行输入变量阶次的选择。使用包含辅助变量时间延迟和阶次的信息作为模型的输入,SCSO算法优化最小二乘支持向量机参数,建立动态NOx排放最小二乘支持向量机预测模型(SCSO-LSSVM动态软测量模型)。最后将模型与未加入迟延的LSSVM模型,加入迟延的LSSVM模型和粒子群优化算法(particle swarm optimization,PSO)优化最小二乘支持向量机参数的动态软测量模型进行对比验证。结果表明,相较于其他模型,该文建立SCSO-LSSVM动态软测量模型均方根误差、平均绝对误差、平均绝对误差最小,预测精度最高,而且在NOx浓度剧烈波动时也能够较好地预测NOx浓度,具有很好的动态特性。 展开更多
关键词 NOx浓度 k近邻互信息 沙地猫群优化算 最小乘支持向量 软测量模型
在线阅读 下载PDF
一种稳健最小二乘支持向量机GNSS-IR土壤湿度反演方法
15
作者 王式太 蒋威 +2 位作者 杨可心 马岳 姜新伟 《遥感信息》 CSCD 北大核心 2024年第2期43-51,共9页
全球卫星导航系统干涉测量(global navigation satellite system interferometric reflectometry,GNSS-IR)是一种新型的遥感技术,可利用多径信噪比序列的延迟相位值反演土壤湿度值,其延迟相位求解通常使用信赖域算法,该算法一定程度依... 全球卫星导航系统干涉测量(global navigation satellite system interferometric reflectometry,GNSS-IR)是一种新型的遥感技术,可利用多径信噪比序列的延迟相位值反演土壤湿度值,其延迟相位求解通常使用信赖域算法,该算法一定程度依赖初值设定。文章先使用遗传算法求解出延迟相位粗略值,再将该数值作为信赖域的初值用于迭代计算,提升了部分卫星延迟相位的求解精度及稳定性。此外,针对多径信噪比序列易受环境因素影响引入粗差,进而影响模型反演精度,文章采用稳健最小二乘支持向量机作为反演模型,同时又考虑到多星融合的时空尺度优势,将该模型分别做了单星反演至五星融合反演,并与最小二乘支持向量机模型做对比。分析结果表明,当三星融合时该模型提升精度最为明显,MAE最高可降低15.6%,RMSE最高可降低12.0%。 展开更多
关键词 GNSS-IR 土壤湿度 遗传算 多卫星融合 稳健最小乘支持向量
在线阅读 下载PDF
基于改进最小二乘支持向量机组合模型的深基坑沉降变形预测 被引量:7
16
作者 刘清龙 吕颖慧 +1 位作者 秦磊 赵鹏 《济南大学学报(自然科学版)》 CAS 北大核心 2024年第1期8-14,共7页
为了提高深基坑沉降变形预测精度,及时为深基坑支护施工提供指导,提出一种改进最小二乘支持向量机组合模型;通过引入自适应噪声完备集合经验模态分解方法分解原始深基坑沉降变形数据,并结合粒子群优化算法和遗传算法对最小二乘支持向量... 为了提高深基坑沉降变形预测精度,及时为深基坑支护施工提供指导,提出一种改进最小二乘支持向量机组合模型;通过引入自适应噪声完备集合经验模态分解方法分解原始深基坑沉降变形数据,并结合粒子群优化算法和遗传算法对最小二乘支持向量机进行参数寻优,对分解的数据分别训练、预测后再叠加,得到最终预测结果;应用所提出模型对济南市某深基坑的累积沉降量进行预测,同时与其他模型对比,验证所提出模型的实用性和优越性。结果表明:所提出模型预测深基坑累积沉降量的平均相对误差为0.035%,均方误差为0.0809 mm^(2),均方根误差为0.2838 mm,所提出模型的准确性远优于其他模型的;自适应噪声完备集合经验模态分解方法的引入更有利于在深基坑沉降变形预测方面发挥最小二乘支持向量机的优势。 展开更多
关键词 深基坑沉降变形 最小乘支持向量 经验模态分解 粒子群优化算 遗传算
在线阅读 下载PDF
基于多分类最小二乘支持向量机和改进粒子群优化算法的电力变压器故障诊断方法 被引量:124
17
作者 郑含博 王伟 +3 位作者 李晓纲 王立楠 李予全 韩金华 《高电压技术》 EI CAS CSCD 北大核心 2014年第11期3424-3429,共6页
为了提高故障诊断的准确率,提出了一种多分类最小二乘支持向量机(LS-SVM)和改进粒子群优化(PSO)相结合的电力变压器故障诊断方法。引入最小输出编码构造多个2分类LS-SVM,实现了变压器诊断的多类分类。利用PSO算法获得LS-SVM诊断模型的... 为了提高故障诊断的准确率,提出了一种多分类最小二乘支持向量机(LS-SVM)和改进粒子群优化(PSO)相结合的电力变压器故障诊断方法。引入最小输出编码构造多个2分类LS-SVM,实现了变压器诊断的多类分类。利用PSO算法获得LS-SVM诊断模型的最优参数,并采用交叉验证原理来提高分类算法的整体泛化性能。实例分析结果表明,采用LS-SVM和PSO算法可以准确、有效地对变压器进行故障诊断;与传统的电力变压器故障诊断方法相比,该方法的诊断准确率更高。 展开更多
关键词 最小乘支持向量 多类分类 粒子群优化 故障诊断 电力变压器 准确率
在线阅读 下载PDF
基于参数优化的最小二乘支持向量机触电电流检测方法 被引量:37
18
作者 韩晓慧 杜松怀 +2 位作者 苏娟 关海鸥 邵利敏 《农业工程学报》 EI CAS CSCD 北大核心 2014年第23期238-245,共8页
针对如何从低压电网总泄漏电流中检测出生物体触电电流信号的难题,提出了一种基于网格搜索和交叉验证的最小二乘支持向量机的触电电流信号检测方法。首先在剩余电流动作保护装置触电物理试验系统平台上通过故障录波器获得生物体在3个典... 针对如何从低压电网总泄漏电流中检测出生物体触电电流信号的难题,提出了一种基于网格搜索和交叉验证的最小二乘支持向量机的触电电流信号检测方法。首先在剩余电流动作保护装置触电物理试验系统平台上通过故障录波器获得生物体在3个典型时刻(电源电压最大时刻、电源电压过零时刻及电源电压任意时刻)发生触电过程的总泄漏电流和触电电流波形,并截取触电前1个周期和触电后3个周期共800个采样点的信号数据作为触电试验样本数据;然后将触电试验样本数据进行滤波预处理,预处理后的多个样本采样点的总泄漏电流组合成特征向量输入最小二乘支持向量机(least square-support vector machine,LS-SVM),相应样本采样点的触电电流作为其输出,并通过网格搜索与交叉验证相结合的方法来优化最小二乘支持向量机参数,利用输出最优参数组合对触电电流与总泄漏电流的关系进行训练,从而建立了触电电流的检测模型;最后利用该方法对10组测试样本数据进行了检测,检测结果为:当训练样本数据为20组时,检测均方误差为14.0040,当训练样本数据为40组时,检测均方误差为11.7469,当训练试验数据为65组时,检测均方误差为11.1849。与径向基(radial basis function,RBF)神经网络方法相比,最小二乘支持向量机方法比径向基神经网络方法检测均方误差分别低3.7272、1.9132、0.1556,从而可较准确地从总泄漏电流中检测出生物体触电电流信号,为开发新一代基于生物体触电电流分量而动作的自适应型剩余电流保护装置提供理论依据。 展开更多
关键词 优化 电流 信号检测 总泄漏电流 触电电流 最小乘支持向量 网格搜索 交叉验证
在线阅读 下载PDF
基于遗传算法最小二乘支持向量机的耕地变化预测 被引量:49
19
作者 张豪 罗亦泳 +1 位作者 张立亭 陈竹安 《农业工程学报》 EI CAS CSCD 北大核心 2009年第7期226-231,共6页
针对耕地变化内部规律与模拟方法进行研究,提出最小二乘支持向量机耕地变化预测方法,有效构建耕地变化与耕地变化影响因子之间复杂的非线性关系模型。利用遗传算法全局寻优功能优化最小二乘支持向量机内部参数,提高最小二乘支持向量机... 针对耕地变化内部规律与模拟方法进行研究,提出最小二乘支持向量机耕地变化预测方法,有效构建耕地变化与耕地变化影响因子之间复杂的非线性关系模型。利用遗传算法全局寻优功能优化最小二乘支持向量机内部参数,提高最小二乘支持向量机耕地变化预测模型精度。利用该模型对江苏无锡市1987-2000年期间耕地变化进行预测,并与多元回归、GM(1,1)、BP网络、支持向量机(SVM)耕地预测模型和实际调查耕地变化数据进行比较分析。预测精度评价结果证实,该方法耕地预测精度远高于多元回归、GM(1,1),BP网络模型,略高于SVM模型,但算法复杂度和计算效率远优于SVM预测模型,是一种有效的耕地变化预测方法。 展开更多
关键词 最小乘支持向量 遗传算 耕地预测 影响因子 精度分析
在线阅读 下载PDF
自适应迭代最小二乘支持向量机回归算法 被引量:14
20
作者 杨滨 杨晓伟 +3 位作者 黄岚 梁艳春 周春光 吴春国 《电子学报》 EI CAS CSCD 北大核心 2010年第7期1621-1625,共5页
基于最小二乘支持向量机回归算法,本文在前期工作的基础上进行了扩展,提出了更加详尽的自适应迭代最小二乘支持向量机回归算法.与标准的LSSVR相比,本文提出的算法在学习新样本的时候利用了已有的学习结果,可以快速获得新的学习机.模拟... 基于最小二乘支持向量机回归算法,本文在前期工作的基础上进行了扩展,提出了更加详尽的自适应迭代最小二乘支持向量机回归算法.与标准的LSSVR相比,本文提出的算法在学习新样本的时候利用了已有的学习结果,可以快速获得新的学习机.模拟结果表明,自适应迭代最小二乘支持向量机回归算法能够自适应地确定支持向量的数目,保留了QP方法在训练SVM时支持向量的稀疏性,在相近的回归精度下,该算法极大地提高了标准LSSVR学习的速度. 展开更多
关键词 支持向量 自适应 迭代 回归 最小二乘
在线阅读 下载PDF
上一页 1 2 178 下一页 到第
使用帮助 返回顶部