期刊文献+
共找到4,360篇文章
< 1 2 218 >
每页显示 20 50 100
局部最小二乘支持向量机回归在线建模方法及其在间歇过程的应用 被引量:19
1
作者 刘毅 王海清 李平 《化工学报》 EI CAS CSCD 北大核心 2007年第11期2846-2851,共6页
当间歇生产切换于不同的工艺条件时,由于新工况下的样本一般很少,且批次间存在着不确定性(由于原材料波动或过程动态特性波动等),基于全局学习的建模方法(如最小二乘支持向量机回归,LSSVR)建立的模型泛化性能不强。将局部学习融入LSSVR... 当间歇生产切换于不同的工艺条件时,由于新工况下的样本一般很少,且批次间存在着不确定性(由于原材料波动或过程动态特性波动等),基于全局学习的建模方法(如最小二乘支持向量机回归,LSSVR)建立的模型泛化性能不强。将局部学习融入LSSVR中,提出一种局部LSSVR(local LSSVR,LLSSVR)的间歇过程在线建模方法。结合前一批次离线优化后的LSSVR参数,针对待预测新样本在线选择与之相关的近邻样本集并基于此进行建模。以建立青霉素发酵过程的菌体浓度为例,验证了LLSSVR算法能够从过程的第2个生产批次开始在线建立较准确的预报模型,较LSSVR有着更好的推广能力、适应性和鲁棒性。 展开更多
关键词 局部最小二乘支持向量机回归 在线建模 间歇过程 发酵
在线阅读 下载PDF
用于发酵过程在线建模的自适应局部最小二乘支持向量机回归方法 被引量:16
2
作者 刘毅 王海清 李平 《化工学报》 EI CAS CSCD 北大核心 2008年第8期2052-2057,共6页
提出一种基于自适应局部学习的最小二乘支持向量机回归(LSSVR)在线建模方法。考虑样本间的距离和角度信息以获得更全面合理的相似样本集,推导了采用快速留一法在线优化模型参数的准则,并给出了发酵过程在线自适应模型选择的策略。以链... 提出一种基于自适应局部学习的最小二乘支持向量机回归(LSSVR)在线建模方法。考虑样本间的距离和角度信息以获得更全面合理的相似样本集,推导了采用快速留一法在线优化模型参数的准则,并给出了发酵过程在线自适应模型选择的策略。以链激酶流加发酵过程为例,验证了所提出算法能够从过程的第2批次开始,同时对活性菌体浓度和链激酶浓度进行较准确的在线预报,较普通的局部LSSVR等建模方法具有更高的预报精度和自适应性。 展开更多
关键词 自适应局部学习 最小二乘支持向量机回归 快速留一法 在线建模 发酵过程
在线阅读 下载PDF
基于半监督学习和最小二乘支持向量机回归的废旧机电产品再制造成本预测方法研究 被引量:1
3
作者 敖秀奕 张旭刚 +1 位作者 江志刚 张华 《组合机床与自动化加工技术》 北大核心 2019年第4期71-73,77,共4页
文章针对再制造批量小、实验所需样本不足的问题,提出一种基于半监督学习与最小二乘支持向量机回归的再制造成本预测方法。废旧机电产品的可用零部件分为可直接利用、可再制造加工利用和直接替换三种类型,以各类型零部件的比率和再制造... 文章针对再制造批量小、实验所需样本不足的问题,提出一种基于半监督学习与最小二乘支持向量机回归的再制造成本预测方法。废旧机电产品的可用零部件分为可直接利用、可再制造加工利用和直接替换三种类型,以各类型零部件的比率和再制造复杂系数为输入,再制造成本为输出,建立半监督学习与最小二乘支持向量机回归相结合的再制造成本预测模型。利用k最近邻算法估计未进行再制造样本的成本,然后将未进行再制造的样本与已知再制造成本的样本代入方程组即可求出该预测模型。案例分析表明基于半监督学习与最小二乘支持向量机回归的成本预测方法能够在已知再制造成本的样本量较少的情况下对成本进行快速且准确的预测,是一种很好的成本预测方法。 展开更多
关键词 再制造 半监督学习 最小二乘支持向量机回归
在线阅读 下载PDF
自适应迭代最小二乘支持向量机回归算法 被引量:14
4
作者 杨滨 杨晓伟 +3 位作者 黄岚 梁艳春 周春光 吴春国 《电子学报》 EI CAS CSCD 北大核心 2010年第7期1621-1625,共5页
基于最小二乘支持向量机回归算法,本文在前期工作的基础上进行了扩展,提出了更加详尽的自适应迭代最小二乘支持向量机回归算法.与标准的LSSVR相比,本文提出的算法在学习新样本的时候利用了已有的学习结果,可以快速获得新的学习机.模拟... 基于最小二乘支持向量机回归算法,本文在前期工作的基础上进行了扩展,提出了更加详尽的自适应迭代最小二乘支持向量机回归算法.与标准的LSSVR相比,本文提出的算法在学习新样本的时候利用了已有的学习结果,可以快速获得新的学习机.模拟结果表明,自适应迭代最小二乘支持向量机回归算法能够自适应地确定支持向量的数目,保留了QP方法在训练SVM时支持向量的稀疏性,在相近的回归精度下,该算法极大地提高了标准LSSVR学习的速度. 展开更多
关键词 支持向量 自适应 迭代 回归 最小二乘
在线阅读 下载PDF
基于滚动时间窗的最小二乘支持向量机回归估计方法及仿真 被引量:55
5
作者 阎威武 常俊林 邵惠鹤 《上海交通大学学报》 EI CAS CSCD 北大核心 2004年第4期524-526,532,共4页
提出了一种基于滚动时间窗的最小二乘支持向量机(LSSVM)回归估计方法.该方法构造了滚动时间窗,利用滚动时间窗内的数据优化建模.模型随着时间窗的滚动进行在线更新,并对滚动时间窗内的数据分配不同的权值以充分利用数据的信息.将基于滚... 提出了一种基于滚动时间窗的最小二乘支持向量机(LSSVM)回归估计方法.该方法构造了滚动时间窗,利用滚动时间窗内的数据优化建模.模型随着时间窗的滚动进行在线更新,并对滚动时间窗内的数据分配不同的权值以充分利用数据的信息.将基于滚动时间窗的LSSVM回归估计方法应用于软测量建模,进行轻柴油凝固点的预估.结果表明,该建模方法十分有效. 展开更多
关键词 最小乘支持向量 软测量 滚动时间窗 建模
在线阅读 下载PDF
在线鲁棒最小二乘支持向量机回归建模 被引量:17
6
作者 张淑宁 王福利 +1 位作者 何大阔 贾润达 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第11期1601-1606,共6页
鉴于工业过程的时变特性以及现场采集的数据通常具有非线性特性且包含离群点,利用最小二乘支持向量机回归(least squares support vector regression,LSSVR)建模易受离群点的影响.针对这一问题,结合鲁棒学习算法(robust learning algori... 鉴于工业过程的时变特性以及现场采集的数据通常具有非线性特性且包含离群点,利用最小二乘支持向量机回归(least squares support vector regression,LSSVR)建模易受离群点的影响.针对这一问题,结合鲁棒学习算法(robust learning algorithm,RLA),本文提出了一种在线鲁棒最小二乘支持向量机回归建模方法.该方法首先利用LSSVR模型对过程输出进行预测,与真实输出相比较得到预测误差;然后利用RLA方法训练LSSVR模型的权值,建立鲁棒LSSVR模型;最后应用增量学习方法在线更新鲁棒LSSVR模型,从而得到在线鲁棒LSSVR模型.仿真研究验证了所提方法的有效性. 展开更多
关键词 鲁棒学习算法 最小乘支持向量 鲁棒性 非线性
在线阅读 下载PDF
最小二乘支持向量机回归的HHT在水轮发电机组故障诊断中的应用 被引量:15
7
作者 贾嵘 王小宇 +2 位作者 蔡振华 张丽 罗兴锜 《中国电机工程学报》 EI CSCD 北大核心 2006年第22期128-133,共6页
水轮发电机组的故障表现为振动信号中出现异常频率成分,Hilbert-Huang变换可自适应地将这种频率成分提取出来并形成时频谱。但变换过程中,当两侧端点不为极值点时,会造成三次样条拟合的极值包络线偏离实际值,并且随着分解的不断进行向... 水轮发电机组的故障表现为振动信号中出现异常频率成分,Hilbert-Huang变换可自适应地将这种频率成分提取出来并形成时频谱。但变换过程中,当两侧端点不为极值点时,会造成三次样条拟合的极值包络线偏离实际值,并且随着分解的不断进行向内“污染”。提出基于最小二乘支持向量机回归的Hilbert-Huang变换,该方法采用最小二乘支持向量机回归的方法对原信号两端进行拓延,得到附加的极值点,再利用三次样条插值的方法得到上、下包络线,实现了准确的EMD分解。将改进后的Hilbert-Huang变化应用于水轮发电机组故障诊断中,结果表明,该方法有效抑制了端点效应,实现了故障的准确识别。 展开更多
关键词 水轮发电 故障诊断 希尔伯特-黄变换 端点效应 最小乘支持向量
在线阅读 下载PDF
基于MapReduce的最小二乘支持向量机回归模型 被引量:4
8
作者 代亮 许宏科 +2 位作者 陈婷 钱超 梁殿鹏 《计算机应用研究》 CSCD 北大核心 2015年第4期1060-1064,共5页
针对最小二乘支持向量机处理大规模数据集耗时长且受内存限制的特点,将局部多模型方法与MapReduce编程模式相结合,提出一种并行最小二乘支持向量机回归模型。模型由两组MapReduce过程组成,首先按照输入样本集对样本数据进行聚类操作,再... 针对最小二乘支持向量机处理大规模数据集耗时长且受内存限制的特点,将局部多模型方法与MapReduce编程模式相结合,提出一种并行最小二乘支持向量机回归模型。模型由两组MapReduce过程组成,首先按照输入样本集对样本数据进行聚类操作,再对聚类后得到的子类按输出样本集进行二次聚类操作,分别得到局部模型数目和各局部模型综合加权输出计算结果。实验结果表明,并行最小二乘支持向量机回归模型具有较好的加速比和可扩展性。 展开更多
关键词 最小乘支持向量 MapReduce编程模式 局部多模型方法 加速比 可扩展性
在线阅读 下载PDF
基于最小二乘支持向量机回归的基坑变形预测 被引量:8
9
作者 徐洪钟 杨磊 《南京工业大学学报(自然科学版)》 CAS 2008年第2期51-53,58,共4页
将最小二乘支持向量机回归用于基坑变形预测.根据基坑位移的实测时间序列资料,应用最小二乘支持向量机回归建立了基坑位移与时间的关系模型.研究结果表明,最小二乘支持向量机回归用于基坑变形预测,具有较高的预测精度.与通常采用的BP神... 将最小二乘支持向量机回归用于基坑变形预测.根据基坑位移的实测时间序列资料,应用最小二乘支持向量机回归建立了基坑位移与时间的关系模型.研究结果表明,最小二乘支持向量机回归用于基坑变形预测,具有较高的预测精度.与通常采用的BP神经网络相比,该方法具有预测误差小、计算快速、所需数据少等优点. 展开更多
关键词 基坑 变形预测 最小乘支持向量 支持向量
在线阅读 下载PDF
基于矢量基学习的自适应迭代最小二乘支持向量机回归算法 被引量:2
10
作者 邢永忠 吴晓蓓 徐志良 《南京理工大学学报》 EI CAS CSCD 北大核心 2011年第3期328-333,共6页
为增强最小二乘支持向量机(LS-SVM)回归建模的稀疏性、鲁棒性和实时性,在加权LS-SVM的基础上,提出了基于矢量基学习的自适应迭代回归算法。在训练过程中,该算法通过矢量基学习和自适应迭代相结合的方法得到1个小的支持向量集,同时采... 为增强最小二乘支持向量机(LS-SVM)回归建模的稀疏性、鲁棒性和实时性,在加权LS-SVM的基础上,提出了基于矢量基学习的自适应迭代回归算法。在训练过程中,该算法通过矢量基学习和自适应迭代相结合的方法得到1个小的支持向量集,同时采用加权方法确定权值以减小训练样本中非高斯噪声的影响。回归学习和动态系统辩识的仿真结果表明:在回归建模精度相似的情况下,该算法确定的支持向量为全部学习样本的4.9%~8.9%,训练时间为标准LS-SVM的0.011%~0.383%;由于能够鲁棒跟踪时变非线性系统的动态特性,适合在线实时训练;可进一步用于非线性系统的建模和实时控制研究。 展开更多
关键词 最小乘支持向量 矢量基 自适应迭代 回归算法
在线阅读 下载PDF
有界不确定结构基于最小二乘支持向量机回归的动力特性分析方法 被引量:1
11
作者 莫延彧 郭书祥 唐承 《振动与冲击》 EI CSCD 北大核心 2017年第7期199-207,233,共10页
针对不确定结构的动力特性分析问题展开研究,考虑仅已知结构参数变量变化范围的情况,建立不确定参数变量的区间模型。对不确定变量在其取值范围内进行改进的均匀试验设计抽样,并基于确定结构动力特性分析的有限元法和模态叠加理论,提出... 针对不确定结构的动力特性分析问题展开研究,考虑仅已知结构参数变量变化范围的情况,建立不确定参数变量的区间模型。对不确定变量在其取值范围内进行改进的均匀试验设计抽样,并基于确定结构动力特性分析的有限元法和模态叠加理论,提出改进均匀试验设计抽样模拟方法;考虑到该算法计算效率较低,对其进行改进并提出基于最小二乘支持向量机回归的模拟方法,算法在不改变样本点数量的前提下,引入了支持向量机回归代理模型,用训练后的代理模型对不确定结构的动力特性进行了模拟分析。算法通过两个数值算例验证了其有效性。 展开更多
关键词 均匀设计 区间模型 频率分析 频响分析 支持向量回归
在线阅读 下载PDF
基于最小二乘支持向量机回归的单桩竖向极限承载力预测 被引量:1
12
作者 杨磊 徐洪钟 《南京工业大学学报(自然科学版)》 CAS 2007年第4期21-24,共4页
基于单桩载荷试验数据,采用最小二乘支持向量机(LSSVM)回归的方法,建立了单桩竖向极限承载力的预测模型.利用文献中桩的载荷试验数据来训练LSSVM模型,并确定了模型参数.研究结果表明,同常用的BP网络相比,LSSVM预测模型具有学习速度快、... 基于单桩载荷试验数据,采用最小二乘支持向量机(LSSVM)回归的方法,建立了单桩竖向极限承载力的预测模型.利用文献中桩的载荷试验数据来训练LSSVM模型,并确定了模型参数.研究结果表明,同常用的BP网络相比,LSSVM预测模型具有学习速度快、预测性能较好、选择参数少等优点,是一种有效的预测单桩极限承载力的方法. 展开更多
关键词 单桩 最小乘支持向量 竖向极限承载力 预测模型
在线阅读 下载PDF
基于改进金豺算法优化最小二乘法支持向量机的磨削表面粗糙度预测
13
作者 朱文博 张淑权 +1 位作者 张梦梦 迟玉伦 《表面技术》 北大核心 2025年第16期165-181,共17页
目的磨削过程中粗糙度直接影响产品质量,为有效预测工件磨削表面粗糙度,基于声发射和振动信号提出一种改进金豺算法(IGJO)优化最小二乘法支持向量(LSSVM)的磨削表面粗糙度预测方法。方法为增强信号特征与磨削表面粗糙度相关性,利用皮尔... 目的磨削过程中粗糙度直接影响产品质量,为有效预测工件磨削表面粗糙度,基于声发射和振动信号提出一种改进金豺算法(IGJO)优化最小二乘法支持向量(LSSVM)的磨削表面粗糙度预测方法。方法为增强信号特征与磨削表面粗糙度相关性,利用皮尔逊相关分析和主成分分析(PCA)对信号特征进行筛选,降低特征之间的多重共线性,降低模型复杂度;为改善磨削表面粗糙度预测模型的性能,对于金豺算法(GJO)易陷入局部最优问题,在GJO基础上引入佳点集初始化种群、非线性能量因子更新策略以及融合鲸鱼优化算法改进搜索策略,提升算法的初始种群多样性、收敛精度和全局搜索能力;为提高磨削表面粗糙度预测模型有效性,利用IGJO对LSSVM进行参数寻优,建立磨削表面粗糙度预测模型。结果通过轴承套圈内滚道磨削加工实验数据进行验证,结果表明IGJO-LSSVM磨削表面粗糙度预测模型能有效预测粗糙度值,预测精度为95.223%,RMSE值为0.0133,MAPE值为4.776%,R2值为0.956,均优于GJO-LSSVM、LSSVM和BP神经网络模型。结论通过IGJO优化后的LSSVM模型可实现磨削表面粗糙度有效预测,同时能够避免传统LSSVM容易陷入局部极小值的问题,对提高产品磨削质量具有重要意义。 展开更多
关键词 磨削表面粗糙度 轴承套圈 最小二乘支持向量 金豺算法
在线阅读 下载PDF
基于马氏距离的密度加权最小二乘孪生支持向量机
14
作者 吕莉 贺智鹏 +3 位作者 张法滢 张莹莹 康平 李院民 《江西师范大学学报(自然科学版)》 北大核心 2025年第1期37-48,共12页
最小二乘孪生支持向量机基于欧氏距离判断样本相似性并搭建模型的方法未考虑样本不同维度的方差差异对决策超平面位置的影响,导致模型处理此类样本精度不高且对噪声样本敏感.鉴于此,该文提出一种基于马氏距离的密度加权最小二乘孪生支... 最小二乘孪生支持向量机基于欧氏距离判断样本相似性并搭建模型的方法未考虑样本不同维度的方差差异对决策超平面位置的影响,导致模型处理此类样本精度不高且对噪声样本敏感.鉴于此,该文提出一种基于马氏距离的密度加权最小二乘孪生支持向量机.该算法利用马氏距离替换欧氏距离构造密度加权策略,充分考虑点与分布的关系,给予噪声数据较低的权重,降低算法对噪声的敏感性;同时结合马氏距离核函数计算样本内协方差矩阵,消除样本特征值之间方差的差异,更准确地体现样本间的相关性,从而优化决策超平面.实验采用人工数据集和UCI数据集,实验结果表明:该算法比同类型分类算法具有更高的分类精确度和泛化能力,能够有效区分在样本中的噪声数据并赋予合适的权重值,提升分类器的鲁棒性. 展开更多
关键词 支持向量 马氏距离 核函数 密度加权 最小二乘损失函数
在线阅读 下载PDF
基于最小二乘支持向量机和车辆荷载监测数据的悬索桥吊索疲劳寿命预测 被引量:1
15
作者 曾国良 邓扬 《桥梁建设》 北大核心 2025年第1期41-48,共8页
针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数... 针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数据的相关性模型,建模过程中考虑LSSVM模型输入与输出的最优模式以及训练数据长度;建立1根吊索(以29号吊索为例)与其它吊索的日疲劳损伤之间的相关性模型,预测其它吊索的疲劳损伤;考虑日车流量和等效车总重的增长,进行吊索疲劳寿命预测。结果表明:对于29号吊索的4种LSSVM模型,模型Ⅳ的边界条件较其它3种模型更为合理,测试数据的平均相对误差低于模型Ⅰ~Ⅲ;该方法将日疲劳损伤与车辆荷载监测数据进行直接关联;LSSVM相关性模型的预测能力依赖于训练样本的数量,当训练数据长度为284 d时,模型Ⅳ的预测能力较强,其平均相对误差低于5.5%;同时考虑日车流量和等效车总重增长时,疲劳累积损伤显著增长。 展开更多
关键词 悬索桥 吊索 结构健康监测 车辆荷载 疲劳损伤 疲劳寿命 最小乘支持向量 相关性模型
在线阅读 下载PDF
基于最小二乘支持向量机解耦的无轴承磁通切换电机转子径向磁悬浮逆系统控制
16
作者 林佳泷 周扬忠 +1 位作者 陈东远 梁彤伟 《电工技术学报》 北大核心 2025年第14期4534-4546,共13页
针对无轴承磁通切换电机非线性、多变量、强耦合特性,该文提出一种转子径向磁悬浮解耦控制策略。首先,采用最小二乘支持向量机的方法对悬浮力模型中的耦合电磁力部分进行拟合补偿,实现悬浮系统初步解耦;然后,验证悬浮系统可逆性,并按照... 针对无轴承磁通切换电机非线性、多变量、强耦合特性,该文提出一种转子径向磁悬浮解耦控制策略。首先,采用最小二乘支持向量机的方法对悬浮力模型中的耦合电磁力部分进行拟合补偿,实现悬浮系统初步解耦;然后,验证悬浮系统可逆性,并按照逆系统理论设计伪线性复合悬浮系统,进一步实现了悬浮系统的线性化解耦;最后,对解耦后的悬浮系统设计闭环控制器,对悬浮闭环系统稳定性进行理论分析。实验结果验证,所提控制策略实现了无轴承磁通切换电机悬浮系统的动态解耦,提升了悬浮系统的动、静态性能。 展开更多
关键词 无轴承磁通切换电 逆系统 最小乘支持向量 径向磁悬浮 解耦控制
在线阅读 下载PDF
基于半监督学习结合最小二乘支持向量机的蝴蝶兰生长期最佳环境模型构建
17
作者 陈俞帆 白芮羽 +3 位作者 陈邦云 王华 敬勇 李亚硕 《农业工程》 2025年第4期38-42,共5页
蝴蝶兰是重要的观赏植物,生长环境对其生长发育具有显著影响。传统栽培方法多依赖经验,缺乏科学性和精准性。收集蝴蝶兰生长过程中的环境参数和生长状态指标,筛选关键特征,采用半监督学习结合最小二乘支持向量机方法,训练深度学习模型... 蝴蝶兰是重要的观赏植物,生长环境对其生长发育具有显著影响。传统栽培方法多依赖经验,缺乏科学性和精准性。收集蝴蝶兰生长过程中的环境参数和生长状态指标,筛选关键特征,采用半监督学习结合最小二乘支持向量机方法,训练深度学习模型用于预测蝴蝶兰生长最佳环境条件。通过自学习方法,模型能够从大量未标记样本中筛选出置信度高的样本,增加训练样本数量,提高模型的泛化能力和预测准确性。试验结果表明,当概率阈值设置为97%时,模型准确性最高,均方根误差3.974、决定系数0.975。该模型可为蝴蝶兰的科学栽培提供新的解决方案。 展开更多
关键词 半监督学习 最小乘支持向量 环境模型 蝴蝶兰 智慧农业
在线阅读 下载PDF
基于红狐优化支持向量机回归的船舶备件预测
18
作者 孟冠军 杨思平 钱晓飞 《合肥工业大学学报(自然科学版)》 北大核心 2025年第1期25-31,共7页
针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐... 针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐优化算法(red fox optimization,RFO)的寻优精度,重构其全局搜索公式,并融合精英反向学习策略。采用基准测试函数对IRFO算法进行仿真实验,实验表明,IRFO算法比RFO算法、粒子群算法、灰狼优化算法寻优能力更强,综合性能更优。基于船舶备件历史数据,建立IRFO-SVR船舶备件预测模型,通过对比其他模型的预测结果,表明IRFO-SVR的预测效果更佳。 展开更多
关键词 船舶备件预测 红狐优化算法(RFO) 支持向量回归(SVR) 精英反向学习
在线阅读 下载PDF
融合可掘性指标与支持向量回归的地铁盾构机姿态预测方法
19
作者 张振 梁杰 +2 位作者 张玉龙 陈铁 刘刚 《城市轨道交通研究》 北大核心 2025年第6期112-116,共5页
[目的]地铁盾构机姿态偏差控制不当会对成型隧道的服役状态造成不利影响,预知施工过程中盾构机的姿态是及时调整其姿态的前提,而现有预测模型多存在可解释性差、数据量要求较高等问题。需研究新的盾构机姿态预测方法。[方法]为增加模型... [目的]地铁盾构机姿态偏差控制不当会对成型隧道的服役状态造成不利影响,预知施工过程中盾构机的姿态是及时调整其姿态的前提,而现有预测模型多存在可解释性差、数据量要求较高等问题。需研究新的盾构机姿态预测方法。[方法]为增加模型的可解释性,引入了表征盾构机在所处地层掘进状态的可掘性指标SE(掘进比能),作为模型的特征参数,并利用在小样本学习方面具有优势的支持向量回归方法建立盾构机姿态预测模型。利用K折交叉验证进行超参数调优,评估预测模型的性能和泛化能力。[结果及结论]将融合模型应用于重庆轨道交通27号线工程实例中,表征盾构机姿态的4项参数的预测结果的拟合优度R 2分别为0.94、0.94、0.90、0.87。融合可掘性指标后,支持向量回归模型的平均预测精度提高了11.96%;相较于反向传播神经网络模型,融合模型预测精度提升了6.41%。支持向量回归模型通过引入具有物理意义的特征参数,能够更准确地预测盾构机姿态,可为施工过程中实时调整盾构机姿态提供有效支撑。 展开更多
关键词 地铁 盾构姿态 掘进比能 支持向量回归
在线阅读 下载PDF
基于沙地猫群优化–最小二乘支持向量机的动态NOx排放预测 被引量:6
20
作者 金秀章 史德金 乔鹏 《中国电机工程学报》 EI CSCD 北大核心 2024年第1期182-190,I0015,共10页
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。... 针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。首先利用k近邻互信息计算时间延迟的同时筛选辅助变量。然后,基于SCSO算法进行输入变量阶次的选择。使用包含辅助变量时间延迟和阶次的信息作为模型的输入,SCSO算法优化最小二乘支持向量机参数,建立动态NOx排放最小二乘支持向量机预测模型(SCSO-LSSVM动态软测量模型)。最后将模型与未加入迟延的LSSVM模型,加入迟延的LSSVM模型和粒子群优化算法(particle swarm optimization,PSO)优化最小二乘支持向量机参数的动态软测量模型进行对比验证。结果表明,相较于其他模型,该文建立SCSO-LSSVM动态软测量模型均方根误差、平均绝对误差、平均绝对误差最小,预测精度最高,而且在NOx浓度剧烈波动时也能够较好地预测NOx浓度,具有很好的动态特性。 展开更多
关键词 NOx浓度 k近邻互信息 沙地猫群优化算法 最小乘支持向量 软测量模型
在线阅读 下载PDF
上一页 1 2 218 下一页 到第
使用帮助 返回顶部