期刊文献+
共找到1,680篇文章
< 1 2 84 >
每页显示 20 50 100
基于最小二乘支持向量回归的新型电力系统电能需求预测算法
1
作者 牛华忠 李校莹 +2 位作者 史英 李晨辉 薛万磊 《消费电子》 2025年第9期116-118,共3页
电能需求预测过程中,对电能数据采取了单一的数值处理方式,导致电能需求量预测效果不佳。为此,本文设计了一种基于最小二乘支持向量回归的新型电力系统电能需求预测算法。通过对电能需求变化曲线进行特征分析,将影响电能需求的因素进行... 电能需求预测过程中,对电能数据采取了单一的数值处理方式,导致电能需求量预测效果不佳。为此,本文设计了一种基于最小二乘支持向量回归的新型电力系统电能需求预测算法。通过对电能需求变化曲线进行特征分析,将影响电能需求的因素进行归一化计算和编码处理,在最小二乘支持向量回归的支持下,设置电能需求预测初始参数,构建电能需求预测模型,并在此基础上,生成电能需求预测算法。仿真实验结果表明,与现有新型电力系统需求预测算法相比,本文设计的基于最小二乘支持向量回归的新型电力系统电能需求预测算法具有良好的预测性能,能够精确预测电能需求量。 展开更多
关键词 最小乘支持向量回归 新型电力系统 电能需求预测 算法设计
在线阅读 下载PDF
基于最小二乘支持向量机和车辆荷载监测数据的悬索桥吊索疲劳寿命预测
2
作者 曾国良 邓扬 《桥梁建设》 北大核心 2025年第1期41-48,共8页
针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数... 针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数据的相关性模型,建模过程中考虑LSSVM模型输入与输出的最优模式以及训练数据长度;建立1根吊索(以29号吊索为例)与其它吊索的日疲劳损伤之间的相关性模型,预测其它吊索的疲劳损伤;考虑日车流量和等效车总重的增长,进行吊索疲劳寿命预测。结果表明:对于29号吊索的4种LSSVM模型,模型Ⅳ的边界条件较其它3种模型更为合理,测试数据的平均相对误差低于模型Ⅰ~Ⅲ;该方法将日疲劳损伤与车辆荷载监测数据进行直接关联;LSSVM相关性模型的预测能力依赖于训练样本的数量,当训练数据长度为284 d时,模型Ⅳ的预测能力较强,其平均相对误差低于5.5%;同时考虑日车流量和等效车总重增长时,疲劳累积损伤显著增长。 展开更多
关键词 悬索桥 吊索 结构健康监测 车辆荷载 疲劳损伤 疲劳寿命 最小乘支持向量 相关性模型
在线阅读 下载PDF
基于遗传算法优化最小二乘支持向量机的矿工疲劳程度识别模型 被引量:2
3
作者 田水承 任治鹏 毛俊睿 《矿业安全与环保》 CAS 北大核心 2024年第4期110-116,共7页
为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后... 为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后,采用主成分分析法对选取的特征指标进行降维处理,建立表征矿工疲劳程度的特征集;在此基础上,利用遗传算法优化最小二乘支持向量机的关键参数,构建矿工疲劳程度识别模型。结果表明:选取的矿工疲劳程度特征指标能够有效反映矿工的疲劳程度;相较GA-SVM和LSSVM模型,融合GA-LSSVM模型可显著提高矿工疲劳程度的识别准确率(平均识别准确率为96.87%)。构建的矿工疲劳程度识别模型可较为高效地识别矿工的疲劳程度,对煤矿人因事故的防控具有一定的现实指导意义。 展开更多
关键词 矿工 疲劳识别 心电信号 最小乘支持向量 遗传算法
在线阅读 下载PDF
自适应迭代最小二乘支持向量机回归算法 被引量:14
4
作者 杨滨 杨晓伟 +3 位作者 黄岚 梁艳春 周春光 吴春国 《电子学报》 EI CAS CSCD 北大核心 2010年第7期1621-1625,共5页
基于最小二乘支持向量机回归算法,本文在前期工作的基础上进行了扩展,提出了更加详尽的自适应迭代最小二乘支持向量机回归算法.与标准的LSSVR相比,本文提出的算法在学习新样本的时候利用了已有的学习结果,可以快速获得新的学习机.模拟... 基于最小二乘支持向量机回归算法,本文在前期工作的基础上进行了扩展,提出了更加详尽的自适应迭代最小二乘支持向量机回归算法.与标准的LSSVR相比,本文提出的算法在学习新样本的时候利用了已有的学习结果,可以快速获得新的学习机.模拟结果表明,自适应迭代最小二乘支持向量机回归算法能够自适应地确定支持向量的数目,保留了QP方法在训练SVM时支持向量的稀疏性,在相近的回归精度下,该算法极大地提高了标准LSSVR学习的速度. 展开更多
关键词 支持向量 自适应 迭代 回归 最小二乘
在线阅读 下载PDF
基于萤火虫群算法优化最小二乘支持向量回归机的滚动轴承故障诊断 被引量:6
5
作者 徐强 刘永前 +2 位作者 田德 张晋华 龙泉 《振动与冲击》 EI CSCD 北大核心 2014年第10期8-12,共5页
滚动轴承故障诊断是提高设备利用率、降低运行及维护成本关键。最小二乘支持向量回归机为有效的故障诊断方法,为解决其参数选取受限于主观经验问题,将萤火虫群算法用于惩罚系数C与核参数σ寻优,提出基于萤火虫群算法优化最小二乘支持向... 滚动轴承故障诊断是提高设备利用率、降低运行及维护成本关键。最小二乘支持向量回归机为有效的故障诊断方法,为解决其参数选取受限于主观经验问题,将萤火虫群算法用于惩罚系数C与核参数σ寻优,提出基于萤火虫群算法优化最小二乘支持向量回归机的滚动轴承故障诊断方法。实验结果表明,该方法能对滚动轴承故障位置及程度进行准确诊断,与常规最小二乘支持向量回归机、BP神经网络相比精度更高,由此验证该方法的可靠性。 展开更多
关键词 滚动轴承 故障诊断 最小乘支持向量回归 萤火虫群算法
在线阅读 下载PDF
基于集成深度玻尔兹曼机和最小二乘支持向量回归的燃烧过程NO_x预测算法 被引量:7
6
作者 李楠 卢钢 +1 位作者 李新利 闫勇 《动力工程学报》 CAS CSCD 北大核心 2016年第8期615-620,共6页
通过研究燃烧过程中的火焰自由基图像与NO_x排放之间的关系,提出了集成深度玻尔兹曼机和最小二乘支持向量回归的NO_x预测算法.首先采用深度玻尔兹曼机对4类火焰自由基图像(OH*、CN*、CH*和C*_2)进行自动图像特征学习,然后用最小二乘支... 通过研究燃烧过程中的火焰自由基图像与NO_x排放之间的关系,提出了集成深度玻尔兹曼机和最小二乘支持向量回归的NO_x预测算法.首先采用深度玻尔兹曼机对4类火焰自由基图像(OH*、CN*、CH*和C*_2)进行自动图像特征学习,然后用最小二乘支持向量回归来拟合图像特征与NO_x排放量之间的关系,进而对NO_x排放量进行预测.结果表明:NO_x排放预测值与NO_x排放参考值具有一致性;与已有的基于图像的NO_x预测算法相比,所提方法在预测精度方面具有明显的优势. 展开更多
关键词 火焰自由基图像 深度玻尔兹曼机 最小乘支持向量回归 NOx预测
在线阅读 下载PDF
基于红狐优化支持向量机回归的船舶备件预测
7
作者 孟冠军 杨思平 钱晓飞 《合肥工业大学学报(自然科学版)》 北大核心 2025年第1期25-31,共7页
针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐... 针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐优化算法(red fox optimization,RFO)的寻优精度,重构其全局搜索公式,并融合精英反向学习策略。采用基准测试函数对IRFO算法进行仿真实验,实验表明,IRFO算法比RFO算法、粒子群算法、灰狼优化算法寻优能力更强,综合性能更优。基于船舶备件历史数据,建立IRFO-SVR船舶备件预测模型,通过对比其他模型的预测结果,表明IRFO-SVR的预测效果更佳。 展开更多
关键词 船舶备件预测 红狐优化算法(RFO) 支持向量回归(SVR) 精英反向学习
在线阅读 下载PDF
基于偏最小二乘特征提取的支持向量机回归算法 被引量:3
8
作者 刘杰 甘旭升 +1 位作者 高海龙 王美乂 《火力与指挥控制》 CSCD 北大核心 2009年第9期114-117,共4页
为了提高SVM的建模质量,简化建模难度,提出了PLS-SVM组合回归建模方法。该方法通过PLS对样本数据进行降维、去噪以及消除共线性处理后,再进行SVM回归建模。不仅保持了SVM良好的模型性能,而且使SVM具备特征提取功能。实验结果表明,该方... 为了提高SVM的建模质量,简化建模难度,提出了PLS-SVM组合回归建模方法。该方法通过PLS对样本数据进行降维、去噪以及消除共线性处理后,再进行SVM回归建模。不仅保持了SVM良好的模型性能,而且使SVM具备特征提取功能。实验结果表明,该方法是可行的,采用此法构建的SVM模型,泛化性能优于没有特征提取的SVM。 展开更多
关键词 特征提取 支持向量 最小二乘 主成分
在线阅读 下载PDF
基于最小二乘支持向量回归的上边界模型构建
9
作者 刘小雍 曾成斌 +2 位作者 刘赟 何国锋 闫庚龙 《华南理工大学学报(自然科学版)》 CSCD 北大核心 2024年第12期139-150,共12页
目前,基于数据驱动的传统非线性系统建模方法主要着眼于模型拟合和应用,鉴于此,该文针对来自系统的某个重要参数受不确定性影响的最大容忍极限输出,构建基于最小二乘支持向量回归(LSSVR)的上边界模型,深入剖析了上边界模型的精度与稀疏... 目前,基于数据驱动的传统非线性系统建模方法主要着眼于模型拟合和应用,鉴于此,该文针对来自系统的某个重要参数受不确定性影响的最大容忍极限输出,构建基于最小二乘支持向量回归(LSSVR)的上边界模型,深入剖析了上边界模型的精度与稀疏特性之间的平衡关系对上边界模型输出的影响。首先,借助LSSVR的优化问题,将原等式线性约束变成满足上边界模型的不等式约束;接着,为提高模型精度,引入基于上边界模型预测输出与实际输出之间逼近误差的不等式约束;与此同时,借助LSSVR的权值二范数来控制上边界模型结构的复杂度,从而构建出新的目标函数,并与满足上边界模型的不等式约束建立新的优化问题;最后,对所建立的优化问题引入拉格朗日函数并借助Karush-Kuhn-Tucker最优化条件来获取相应的对偶优化问题,并将其转化为标准的二次规划问题来求解上边界模型的参数。由于所构造的新优化问题满足凸性,因此模型系数解是全局最优的。该文还通过实验分析了反映模型精度的最大逼近误差、均方根误差及反映模型稀疏特性的指标,论证了所提方法的有效性和优越性。 展开更多
关键词 上边界模型 对偶优化问题 全局最优解 最小乘支持向量回归 次规划
在线阅读 下载PDF
基于斑马算法优化支持向量回归机模型预测页岩地层压力
10
作者 赵军 李勇 +2 位作者 文晓峰 徐文远 焦世祥 《岩性油气藏》 CAS CSCD 北大核心 2024年第6期12-22,共11页
针对陇东地区三叠系延长组7段(长7段)页岩孔隙结构复杂、非均质性强、地层压力预测精度较低等问题,提出了一种基于斑马算法优化支持向量回归机(ZOA-SVR)模型预测地层压力的方法,并在实际钻井中进行了应用,将预测结果与基于机器算法的模... 针对陇东地区三叠系延长组7段(长7段)页岩孔隙结构复杂、非均质性强、地层压力预测精度较低等问题,提出了一种基于斑马算法优化支持向量回归机(ZOA-SVR)模型预测地层压力的方法,并在实际钻井中进行了应用,将预测结果与基于机器算法的模型和常规地层压力预测方法结果进行了对比。研究结果表明:①ZOA-SVR模型以实测地层压力数据为目标变量,优选与陇东地区长7段页岩地层压力数据关联度达到0.70以上的深度、声波时差、密度、补偿中子、自然伽马、深侧向电阻率、泥质含量等7个参数作为输入特征参数,设置训练样本数为40,交叉验证折数为5,初始化斑马种群数量为10,最大迭代次数为70,对惩罚因子和核参数进行优化并建模,参数优化后拟合优度指标R2达到0.942,模型预测的地层压力数据在训练集和测试集上的绝对误差均低于1 MPa,预测测试集地层压力数据与实测压力数据的平均相对误差为2.42%。②ZOA-SVR模型在研究区长7段地层压力预测中优势明显,比基于粒子群优化算法、灰狼算法和蚁群算法的模型具有更好的参数调节及优化能力,R2分别提高了0.209,0.327,0.142;比等效深度法、Eaton法、有效应力法预测的地层压力精度更高,相对误差分别降低了32.53%,15.31%,5.91%。③ZOA-SVR模型在实际钻井中的应用结果显示,研究区长7段地层压力在垂向上分布较稳定,泥页岩段的地层压力高于砂岩段,地层压力系数主要为0.80~0.90,整体上属于异常低压环境,与实际地层情况相符。 展开更多
关键词 页岩 地层压力 斑马优化算法 支持向量回归 机器学习 测井曲线 长7段 三叠系 陇东地区
在线阅读 下载PDF
基于滚动时间窗的最小二乘支持向量机回归估计方法及仿真 被引量:55
11
作者 阎威武 常俊林 邵惠鹤 《上海交通大学学报》 EI CAS CSCD 北大核心 2004年第4期524-526,532,共4页
提出了一种基于滚动时间窗的最小二乘支持向量机(LSSVM)回归估计方法.该方法构造了滚动时间窗,利用滚动时间窗内的数据优化建模.模型随着时间窗的滚动进行在线更新,并对滚动时间窗内的数据分配不同的权值以充分利用数据的信息.将基于滚... 提出了一种基于滚动时间窗的最小二乘支持向量机(LSSVM)回归估计方法.该方法构造了滚动时间窗,利用滚动时间窗内的数据优化建模.模型随着时间窗的滚动进行在线更新,并对滚动时间窗内的数据分配不同的权值以充分利用数据的信息.将基于滚动时间窗的LSSVM回归估计方法应用于软测量建模,进行轻柴油凝固点的预估.结果表明,该建模方法十分有效. 展开更多
关键词 最小乘支持向量 软测量 滚动时间窗 建模
在线阅读 下载PDF
基于改进果蝇算法与最小二乘支持向量机的轧制力预测算法研究 被引量:12
12
作者 杨景明 郭秋辰 +3 位作者 孙浩 马明明 车海军 赵新秋 《计量学报》 CSCD 北大核心 2016年第5期505-508,共4页
铝合金板材精轧过程中,轧制力是影响板材质量的重要因素。为了满足轧制现场的轧制力预报精度要求,采用改进果蝇算法(FOA)与最小二乘支持向量机(LSSVM)相结合进行轧制力预测。改进了果蝇算法的味道浓度判定函数和步长设定方法,采... 铝合金板材精轧过程中,轧制力是影响板材质量的重要因素。为了满足轧制现场的轧制力预报精度要求,采用改进果蝇算法(FOA)与最小二乘支持向量机(LSSVM)相结合进行轧制力预测。改进了果蝇算法的味道浓度判定函数和步长设定方法,采用了分组并行搜索的策略,进而提出一种基于改进FOA—LSSVM的轧制力智能预报方法。将该方法用于铝热连轧现场数据的仿真实验,结果表明样本预测误差在10%以内,其中84%的样本误差在5%以内,精度优于传统模型。 展开更多
关键词 计量学 轧制力预测 最小乘支持向量 果蝇算法
在线阅读 下载PDF
最小二乘回归支持向量机对非线性时间序列预测的试验分析 被引量:16
13
作者 纪玲玲 林振山 +1 位作者 王昌雨 张志华 《解放军理工大学学报(自然科学版)》 EI 北大核心 2009年第1期92-97,共6页
利用最小二乘回归支持向量机LS-SVMR(least square support vectors machines for regression)对2个不同长度的时间序列资料,国家气候中心1982年1月~2005年12月Nino3区逐月海温距平指数(短序列),及1950年1月~2006年12月Nino3区逐月海温... 利用最小二乘回归支持向量机LS-SVMR(least square support vectors machines for regression)对2个不同长度的时间序列资料,国家气候中心1982年1月~2005年12月Nino3区逐月海温距平指数(短序列),及1950年1月~2006年12月Nino3区逐月海温距平指数(长序列)资料进行了预测试验,以验证支持向量机对气候变化中非线性时间序列的预测效果。结果表明:通过训练建立的最小二乘回归支持向量机模型,较好地反映了Nino3区海温距平指数的变化规律,36个月的预报效果较好,具有一定的可信度。资料的长度越长,预测结果与实测值的变化趋势越接近,但资料长度对均方根预报误差不敏感。 展开更多
关键词 最小二乘回归支持向量 海温距平指数 时间序列预测
在线阅读 下载PDF
一种改进的最小二乘孪生支持向量机分类算法 被引量:22
14
作者 储茂祥 王安娜 巩荣芬 《电子学报》 EI CAS CSCD 北大核心 2014年第5期998-1003,共6页
提出了一种新的模式分类器,即广泛权重的最小二乘孪生支持向量机.该支持向量机在正、负两类样本上广泛地增加权重,很好地抑制了交叉噪声样本对数据分类的影响.其次,根据间隔最大化原理,该支持向量机在目标函数上增加了一个正规化项,实... 提出了一种新的模式分类器,即广泛权重的最小二乘孪生支持向量机.该支持向量机在正、负两类样本上广泛地增加权重,很好地抑制了交叉噪声样本对数据分类的影响.其次,根据间隔最大化原理,该支持向量机在目标函数上增加了一个正规化项,实现结构风险最小化和避免在求解该目标函数时可能对病态矩阵求逆的处理.同时,提出了利用一种指数函数计算训练样本的密度来获得样本权重值的算法.该算法能够有效缩减计算权重的时间,且具有较强的鲁棒性.实验证明本文提出的广泛权重的最小二乘孪生支持向量机能够实现高精度和高效率的分类效果,而且特别适合于含有交叉噪声样本的数据集分类. 展开更多
关键词 模式分类 最小二乘 孪生支持向量 权重 指数函数
在线阅读 下载PDF
基于偏最小二乘支持向量机回归区域物流量预测 被引量:9
15
作者 庞明宝 谢玲 +1 位作者 郝然 马宁 《河北工业大学学报》 CAS 2008年第2期91-96,共6页
研究采用偏最小二乘支持向量机回归模型进行区域物流量预测问题.针对普通最小二乘预测所存在的问题和物流系统样本量少的具体状况,提出偏最小二乘支持向量机回归区域物流量预测方法,采用主成分分析法提取影响物流量因素的新综合变量,建... 研究采用偏最小二乘支持向量机回归模型进行区域物流量预测问题.针对普通最小二乘预测所存在的问题和物流系统样本量少的具体状况,提出偏最小二乘支持向量机回归区域物流量预测方法,采用主成分分析法提取影响物流量因素的新综合变量,建立以新综合变量为输入,物流量为输出的支持向量机回归非线性预测模型,在廊坊市物流量预测中进行仿真试验,证明了该方法的可行性与正确性. 展开更多
关键词 最小二乘回归 支持向量 物流 预测 主成分分析
在线阅读 下载PDF
基于向量基回归算法的盾构隧道下穿管线安全风险管控
16
作者 马丛鑫 莫光达 王柏璎 《交通科技》 2025年第2期111-115,共5页
盾构隧道施工经常会穿越各类管线,对隧道工程本身及管线安全运行均会产生影响。以南宁地区某盾构隧道施工时下穿管道为背景,采用支持向量机回归算法建立管控模型,分析盾构施工参数与管线沉降之间的关系。结果表明,采用这一智能算法建立... 盾构隧道施工经常会穿越各类管线,对隧道工程本身及管线安全运行均会产生影响。以南宁地区某盾构隧道施工时下穿管道为背景,采用支持向量机回归算法建立管控模型,分析盾构施工参数与管线沉降之间的关系。结果表明,采用这一智能算法建立的模型经过训练后,管线沉降预测值与实际值吻合度较高,表明该模型具备稳定的预测能力和良好的泛化能力,对预测和管控施工风险、优化施工参数具有指导意义。 展开更多
关键词 支持向量回归算法 盾构隧道 管线 风险管控
在线阅读 下载PDF
基于遗传算法-v支持向量回归的船舶轨迹预测 被引量:1
17
作者 姜立超 尚晓兵 +2 位作者 金豹 张雯 张智 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第10期2001-2006,共6页
为了提高船舶轨迹预测精度,避免船舶海上航行事故的发生,本文采用遗传算法对v-支持向量回归进行参数寻优,以此来分别构建关于经纬度的船舶轨迹预测模型。选取水上移动业务标识码为356772000的货船在2022年6月的船舶自动识别系统数据作... 为了提高船舶轨迹预测精度,避免船舶海上航行事故的发生,本文采用遗传算法对v-支持向量回归进行参数寻优,以此来分别构建关于经纬度的船舶轨迹预测模型。选取水上移动业务标识码为356772000的货船在2022年6月的船舶自动识别系统数据作为研究对象。将该模型的预测结果分别与粒子群优化算法和网格搜索算法优化的v-支持向量回归模型、遗传算法-支持向量回归模型进行比较。实验结果表明:遗传算法v-支持向量回归模型关于航迹经、纬度预测结果的均方误差、平均绝对百分比误差和平均绝对误差相比于其他模型最低,关于经度分别为4.29×10^(-7)(°)、4.50×10^(-4)和5.47×10^(-7)(°)2,关于纬度的分别为1.82×10^(-6)(°)、4.02×10^(-3)和1.08×10^(-3)(°)2。基于遗传算法-v支持向量回归模型的预测效果最好,预测误差波动最小。本文将遗传算法与v-支持向量回归相结合,为船舶轨迹预测模型的优化提供参考,也为海上智能交通提供思路。 展开更多
关键词 船舶轨迹预测 v-支持向量回归 遗传算法 水上移动业务标识码 船舶自动识别系统 交叉验证 智能交通 机器学习
在线阅读 下载PDF
一种基于密度加权的最小二乘支持向量机稀疏化算法 被引量:10
18
作者 司刚全 曹晖 +1 位作者 张彦斌 贾立新 《西安交通大学学报》 EI CAS CSCD 北大核心 2009年第10期11-15,共5页
针对最小二乘支持向量机失去标准支持向量机稀疏特性的问题,提出了一种基于密度加权的稀疏化算法.首先计算样本的密度信息,对样本估计误差进行密度加权获得该样本对模型的可能贡献度;然后选取具有最大可能贡献度的样本作为支持向量,同... 针对最小二乘支持向量机失去标准支持向量机稀疏特性的问题,提出了一种基于密度加权的稀疏化算法.首先计算样本的密度信息,对样本估计误差进行密度加权获得该样本对模型的可能贡献度;然后选取具有最大可能贡献度的样本作为支持向量,同时对支持向量样本邻域内的其他样本密度信息进行削减,从而避免相似样本被选中为支持向量;再选择剩余样本中具有最大可能贡献度的样本添加到支持向量集中,直到模型性能满足要求.仿真和实际应用表明,与Suykens提出的标准稀疏化算法相比,所提出的算法能有效剔除冗余支持向量,具有更好的稀疏性和鲁棒性. 展开更多
关键词 最小乘支持向量 密度加权 稀疏化 磨机负荷
在线阅读 下载PDF
基于粗糙集与最小二乘支持向量回归的汽轮机主蒸汽流量预测 被引量:11
19
作者 张维平 赵文蕾 +1 位作者 李国强 牛培峰 《计量学报》 CSCD 北大核心 2015年第1期43-47,共5页
针对传统主蒸汽流量计算方法的不足,提出了一种新的主蒸汽流量预测方法,该方法综合了粗糙集理论与最小二乘支持向量回归算法的优点,利用ROSETTAV1.4.41研究实验平台中的遗传约简算法对输入变量的属性进行约简,再利用最小二乘支持... 针对传统主蒸汽流量计算方法的不足,提出了一种新的主蒸汽流量预测方法,该方法综合了粗糙集理论与最小二乘支持向量回归算法的优点,利用ROSETTAV1.4.41研究实验平台中的遗传约简算法对输入变量的属性进行约简,再利用最小二乘支持向量回归算法建立主蒸汽流量的预测模型。实验表明,与未经粗糙集理论处理过的BP神经网络、支持向量回归算法和最小二乘支持向量回归算法所建模型相比,该方法具有更好的预测精度和泛化能力,且建模速度显著提高。 展开更多
关键词 计量学 主蒸汽流量 滑压运行曲线 最优初压 最小乘支持向量 引力搜索算法
在线阅读 下载PDF
基于最小二乘支持向量回归机的矿浆酸碱度鲁棒软测量 被引量:3
20
作者 任会峰 阳春华 +2 位作者 周璇 桂卫华 鄢锋 《上海交通大学学报》 EI CAS CSCD 北大核心 2011年第8期1136-1139,1145,共5页
针对酸碱度在线检测仪稳定性差、维护保养成本高等不足及人工检测严重滞后的问题,结合泡沫浮选工艺机理分析,以在线泡沫视频图像表观特征为辅助变量,采用最小二乘支持向量回归机(Least Squares Support Vector Regression,LSSVR)实现了... 针对酸碱度在线检测仪稳定性差、维护保养成本高等不足及人工检测严重滞后的问题,结合泡沫浮选工艺机理分析,以在线泡沫视频图像表观特征为辅助变量,采用最小二乘支持向量回归机(Least Squares Support Vector Regression,LSSVR)实现了泡沫浮选矿浆酸碱度的软测量.将不同特性的核函数凸组合以提高模型性能,并采用最近邻山峰聚类算法约简核矩阵,降低计算复杂度,利用偏最小二乘回归提高模型鲁棒性.工业运行数据仿真结果表明,建立的软测量模型能够连续在线检测矿浆的酸碱度,并获得了比标准LSSVR、加权LSSVR及多核LSSVR更高的预测精度,可满足工业要求. 展开更多
关键词 矿物浮选 酸碱度 软测量 最小乘支持向量回归 减法聚类
在线阅读 下载PDF
上一页 1 2 84 下一页 到第
使用帮助 返回顶部