期刊文献+
共找到2,795篇文章
< 1 2 140 >
每页显示 20 50 100
基于慢特征分析与最小二乘支持向量回归集成的草酸钴合成过程粒度预报
1
作者 张晗 张淑宁 +1 位作者 刘珂 邓冠龙 《化工学报》 EI CSCD 北大核心 2024年第6期2313-2321,共9页
草酸钴合成过程是钴湿法冶炼的关键单元操作,其粒度分布是重要的质量指标,然而难以在线实时测量。同时,草酸钴合成过程通常存在非线性、多约束和慢时变特征。因此,提出一种集成慢特征分析(slow feature analysis,SFA)与最小二乘支持向... 草酸钴合成过程是钴湿法冶炼的关键单元操作,其粒度分布是重要的质量指标,然而难以在线实时测量。同时,草酸钴合成过程通常存在非线性、多约束和慢时变特征。因此,提出一种集成慢特征分析(slow feature analysis,SFA)与最小二乘支持向量回归(least square support vector regression,LSSVR)的草酸钴粒度预报模型对草酸钴合成过程质量指标实现在线测量。在该方法中,首先,SFA方法可以有效地捕获过程的慢特征向量,解决慢时变问题;然后,利用LSSVR方法建立慢特征与粒度之间的非线性关系模型,进而实现质量指标在线预报。最后,应用非线性的数值案例以及草酸钴合成过程数据,验证该方法的有效性。实验结果显示:相较于单一的径向基函数神经网络(radial basis function neural network,RBFNN)、LSSVR预测模型以及SFA与NN相结合的预报模型,所提方法在数值案例中的预测精度分别提升了13.31%、2.26%、1.72%;在草酸钴合成过程中的预测精度分别提升了13.27%、9.96%、8.92%。 展开更多
关键词 草酸钴合成过程 软测量 慢特征分析 最小二乘支持向量回归 化学过程 预测 神经网络
在线阅读 下载PDF
基于最小二乘支持向量回归的上边界模型构建
2
作者 刘小雍 曾成斌 +2 位作者 刘赟 何国锋 闫庚龙 《华南理工大学学报(自然科学版)》 CSCD 北大核心 2024年第12期139-150,共12页
目前,基于数据驱动的传统非线性系统建模方法主要着眼于模型拟合和应用,鉴于此,该文针对来自系统的某个重要参数受不确定性影响的最大容忍极限输出,构建基于最小二乘支持向量回归(LSSVR)的上边界模型,深入剖析了上边界模型的精度与稀疏... 目前,基于数据驱动的传统非线性系统建模方法主要着眼于模型拟合和应用,鉴于此,该文针对来自系统的某个重要参数受不确定性影响的最大容忍极限输出,构建基于最小二乘支持向量回归(LSSVR)的上边界模型,深入剖析了上边界模型的精度与稀疏特性之间的平衡关系对上边界模型输出的影响。首先,借助LSSVR的优化问题,将原等式线性约束变成满足上边界模型的不等式约束;接着,为提高模型精度,引入基于上边界模型预测输出与实际输出之间逼近误差的不等式约束;与此同时,借助LSSVR的权值二范数来控制上边界模型结构的复杂度,从而构建出新的目标函数,并与满足上边界模型的不等式约束建立新的优化问题;最后,对所建立的优化问题引入拉格朗日函数并借助Karush-Kuhn-Tucker最优化条件来获取相应的对偶优化问题,并将其转化为标准的二次规划问题来求解上边界模型的参数。由于所构造的新优化问题满足凸性,因此模型系数解是全局最优的。该文还通过实验分析了反映模型精度的最大逼近误差、均方根误差及反映模型稀疏特性的指标,论证了所提方法的有效性和优越性。 展开更多
关键词 上边界模型 对偶优化问题 全局最优解 最小二乘支持向量回归 次规划
在线阅读 下载PDF
板形模式识别的多输出最小二乘支持向量回归机新方法 被引量:6
3
作者 张秀玲 张少宇 +1 位作者 赵文保 徐腾 《中国机械工程》 EI CAS CSCD 北大核心 2013年第2期258-263,共6页
为了克服最小二乘支持向量回归机(LS-SVR)算法不能直接应用于多输入多输出(MIMO)系统建模的缺点,通过在目标函数中加入样本绝对误差项,提出了一种多输出最小二乘支持向量回归机(MLSSVR)新算法。将MLSSVR算法应用于板形模式识别研究,提... 为了克服最小二乘支持向量回归机(LS-SVR)算法不能直接应用于多输入多输出(MIMO)系统建模的缺点,通过在目标函数中加入样本绝对误差项,提出了一种多输出最小二乘支持向量回归机(MLSSVR)新算法。将MLSSVR算法应用于板形模式识别研究,提出了一种基于MLSSVR的板形模式识别新方法,将该方法与LS-SVR合成识别方法进行对比实验,并对MLSSVR识别模型的识别能力进行了测试和分析,结果证明了MLSSVR算法的有效性。MLSSVR板形模式识别方法不仅避免了LS-SVR合成方法的复杂组合运算,具有更高的识别速度,而且具有更高精度和很强的泛化能力。 展开更多
关键词 最小二乘支持向量回归 多输出最小二乘支持向量回归 板形 模式识别
在线阅读 下载PDF
梯度提升最小二乘支持向量回归的压电执行器磁滞特性建模 被引量:1
4
作者 王建成 李强亚 +2 位作者 刘涛 谭永红 阎帅 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第9期1692-1697,共6页
针对用于精密运动定位的压电执行器具有磁滞效应的问题,本文提出一种基于梯度提升最小二乘支持向量回归(GB-LSSVR)的建模方法.首先,通过引入磁滞算子构造拓展的输入空间,将磁滞的多值映射转换为一对一映射.然后,建立基于GB-LSSVR的磁滞... 针对用于精密运动定位的压电执行器具有磁滞效应的问题,本文提出一种基于梯度提升最小二乘支持向量回归(GB-LSSVR)的建模方法.首先,通过引入磁滞算子构造拓展的输入空间,将磁滞的多值映射转换为一对一映射.然后,建立基于GB-LSSVR的磁滞模型,设计可保证收敛粒子群算法(GCPSO)对GB-LSSVR模型参数进行优化.最后,将所提出方法用于实际预测一个压电执行器的位移.结果表明,该方法相对于经典的最小二乘支持向量回归(LSSVR)和截断最小二乘支持向量回归(T-LSSVR)算法,能得到更加准确的结果. 展开更多
关键词 压电执行器 磁滞效应 磁滞算子 最小乘支持向量 可保证收敛粒子群算法 梯度提升
在线阅读 下载PDF
基于蚁群优化最小二乘支持向量回归机的河蟹养殖溶解氧预测模型 被引量:41
5
作者 刘双印 徐龙琴 +1 位作者 李道亮 曾利华 《农业工程学报》 EI CAS CSCD 北大核心 2012年第23期167-175,共9页
养殖池塘溶解氧是河蟹赖以生存的重要指标,及时准确地掌握溶解氧浓度变化趋势是确保高密度河蟹健康养殖的关键。为提高溶解氧预测精度和效率,该文提出了蚁群算法(ACA)优化最小二乘支持向量回归机(LSSVR)的河蟹养殖溶解氧预测方法。采用... 养殖池塘溶解氧是河蟹赖以生存的重要指标,及时准确地掌握溶解氧浓度变化趋势是确保高密度河蟹健康养殖的关键。为提高溶解氧预测精度和效率,该文提出了蚁群算法(ACA)优化最小二乘支持向量回归机(LSSVR)的河蟹养殖溶解氧预测方法。采用蚁群算法对最小二乘支持向量回归机的模型参数进行优化,并以自动获取的最佳参数组合构建溶解氧与其影响因子间非线性预测模型。利用该模型对江苏宜兴市2010年7月20日~7月28日期间高密度养殖池塘溶解氧进行预测。研究表明,该预测模型取得较好的预测效果,与支持向量回归机和BP神经网络相比,模型评价指标均方根误差、相对均方误差均值、平均绝对误差和和决定系数和运行时间分别为0.0328、0.0016、0.0448、0.9916和3.3275s均优于其他预测方法,ACA-LSSVR模型不仅计算复杂度低、收敛速度快、预测精度高、泛化能力强,还能满足实际高密度河蟹养殖溶解氧管理的需要,为其他领域的水质预测提供参考。 展开更多
关键词 模型 优化 算法 溶解氧预测 最小二乘支持向量回归 河蟹养殖
在线阅读 下载PDF
基于最小二乘支持向量回归机的燃煤锅炉结渣特性预测 被引量:17
6
作者 徐志明 文孝强 +1 位作者 孙媛媛 孙灵芳 《中国电机工程学报》 EI CSCD 北大核心 2009年第17期8-13,共6页
对燃煤锅炉结渣特性建模预测并结合优化算法实现燃烧优化是降低锅炉结渣几率有效的方法。文中将煤的软化温度tST、硅铝比w(SiO2)/w(Al2O3)、碱酸比J、硅比G以及锅炉的无因次炉膛平均温度φt、无因次切圆直径φd等作为输入变量,以结渣程... 对燃煤锅炉结渣特性建模预测并结合优化算法实现燃烧优化是降低锅炉结渣几率有效的方法。文中将煤的软化温度tST、硅铝比w(SiO2)/w(Al2O3)、碱酸比J、硅比G以及锅炉的无因次炉膛平均温度φt、无因次切圆直径φd等作为输入变量,以结渣程度作为输出,建立最小二乘支持向量回归机燃煤锅炉结渣预测模型。同时采用显微镜原理对惩罚参数γ和核参数σ进行寻优,快速有效地获得二者的最优组合。通过对5台锅炉结渣特性进行预测评判,结果表明此方法是合理可行的。同时依据本方法及面向对象的高级语言,开发了相应的预测评判系统。 展开更多
关键词 最小二乘支持向量回归 燃煤锅炉 动态指标 结渣 评判
在线阅读 下载PDF
最小二乘支持向量回归滤波系统性能分析 被引量:6
7
作者 邓小英 杨顶辉 +2 位作者 刘涛 李月 杨宝俊 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2010年第8期2004-2011,共8页
支持向量机(Support Vector Machine:SVM)一直作为机器学习方法在统计学习理论基础上被研究和发展,本文从信号与系统的角度出发,证明了平移不变核最小二乘支持向量机(Least Squares SVM:LS-SVM)是一个线性时不变系统.以Ricker子波核为例... 支持向量机(Support Vector Machine:SVM)一直作为机器学习方法在统计学习理论基础上被研究和发展,本文从信号与系统的角度出发,证明了平移不变核最小二乘支持向量机(Least Squares SVM:LS-SVM)是一个线性时不变系统.以Ricker子波核为例,探讨了不同参数对最小二乘支持向量回归(Least Squares Support VectorRegression:LS-SVR)滤波器频率响应特性的影响,这些参数的不同选择相应地控制着滤波器通带上升沿的陡峭性、通带的中心频率、通带带宽以及信号能量的衰减,即滤波器长度越长通带的上升沿越陡,核参数值越大通带的中心频率越高,且通带带宽越宽,正则化参数值越小,通带带宽越窄(但通带中心频率基本保持恒定),有效信号幅度衰减越严重.合成地震记录的仿真实验结果表明,Ricker子波核LS-SVR滤波器在处理地震勘探信号的应用中,滤波性能优于径向基函数(Radial Basic Function:RBF)核LS-SVR滤波器以及小波变换滤波和Wiener滤波方法. 展开更多
关键词 支持向量 Ricker子波核 最小二乘支持向量回归滤波系统 频率响应 随机噪声
在线阅读 下载PDF
基于最小二乘支持向量回归机的无线传感器网络目标定位法 被引量:11
8
作者 刘桂雄 张晓平 周松斌 《光学精密工程》 EI CAS CSCD 北大核心 2009年第7期1766-1773,共8页
针对RSSI测距误差直接影响无线传感器网络(WSN)目标定位准确度的问题,从目标位置与目标到传感器节点测距矢量的双射关系入手,建立最小二乘支持向量回归机(LSSVR)目标定位的数学模型,提出了一种基于LSSVR的WSN目标定位方法TL-LSSVR。根... 针对RSSI测距误差直接影响无线传感器网络(WSN)目标定位准确度的问题,从目标位置与目标到传感器节点测距矢量的双射关系入手,建立最小二乘支持向量回归机(LSSVR)目标定位的数学模型,提出了一种基于LSSVR的WSN目标定位方法TL-LSSVR。根据虚拟目标坐标和虚拟目标到传感器节点距离矢量构造出训练样本,通过确定学习区域及网格化采样获得训练样本集,采用LSSVR训练得到定位模型,将测量得到的距离矢量输入定位模型实现目标定位。对不同传感器节点数量以及不同节点分布情况下的WSN目标进行了定位实验。结果显示,对于节点随机分布的情况,TL-LSSVR方法的定位误差比最小二乘法减小21.0%~43.1%;对于节点均匀分布的情况,TL-LSSVR方法的定位误差则减小26.5%~48.7%,表明TL-LSSVR方法能有效减小测距误差对定位结果的影响,提高目标定位准确度。 展开更多
关键词 无线传感器网络(WSN) 目标定位 最小二乘支持向量回归机(LSSVR) 回归建模
在线阅读 下载PDF
基于集成深度玻尔兹曼机和最小二乘支持向量回归的燃烧过程NO_x预测算法 被引量:7
9
作者 李楠 卢钢 +1 位作者 李新利 闫勇 《动力工程学报》 CAS CSCD 北大核心 2016年第8期615-620,共6页
通过研究燃烧过程中的火焰自由基图像与NO_x排放之间的关系,提出了集成深度玻尔兹曼机和最小二乘支持向量回归的NO_x预测算法.首先采用深度玻尔兹曼机对4类火焰自由基图像(OH*、CN*、CH*和C*_2)进行自动图像特征学习,然后用最小二乘支... 通过研究燃烧过程中的火焰自由基图像与NO_x排放之间的关系,提出了集成深度玻尔兹曼机和最小二乘支持向量回归的NO_x预测算法.首先采用深度玻尔兹曼机对4类火焰自由基图像(OH*、CN*、CH*和C*_2)进行自动图像特征学习,然后用最小二乘支持向量回归来拟合图像特征与NO_x排放量之间的关系,进而对NO_x排放量进行预测.结果表明:NO_x排放预测值与NO_x排放参考值具有一致性;与已有的基于图像的NO_x预测算法相比,所提方法在预测精度方面具有明显的优势. 展开更多
关键词 火焰自由基图像 深度玻尔兹曼机 最小二乘支持向量回归 NOx预测
在线阅读 下载PDF
基于梯度信息的最小二乘支持向量回归机 被引量:5
10
作者 周晓剑 马义中 +1 位作者 刘利平 汪建均 《南京理工大学学报》 EI CAS CSCD 北大核心 2011年第1期138-143,共6页
为了解决传统最小二乘支持向量回归机(LS-SVR)对训练样本量要求过高的问题,提出了基于梯度信息的支持向量回归机(GE-LS-SVR)模型。通过修改目标函数及约束条件,将梯度信息引入模型的构建中,重新构造了决策函数。采用了三个基准函数对模... 为了解决传统最小二乘支持向量回归机(LS-SVR)对训练样本量要求过高的问题,提出了基于梯度信息的支持向量回归机(GE-LS-SVR)模型。通过修改目标函数及约束条件,将梯度信息引入模型的构建中,重新构造了决策函数。采用了三个基准函数对模型进行了验证,并用三个常用度量准则对实验结果进行了比较。结果表明提出的模型能在较少样本的情况下达到较为理想的回归精度。 展开更多
关键词 支持向量 最小二乘支持向量回归 梯度信息 计算机试验
在线阅读 下载PDF
基于萤火虫群算法优化最小二乘支持向量回归机的滚动轴承故障诊断 被引量:6
11
作者 徐强 刘永前 +2 位作者 田德 张晋华 龙泉 《振动与冲击》 EI CSCD 北大核心 2014年第10期8-12,共5页
滚动轴承故障诊断是提高设备利用率、降低运行及维护成本关键。最小二乘支持向量回归机为有效的故障诊断方法,为解决其参数选取受限于主观经验问题,将萤火虫群算法用于惩罚系数C与核参数σ寻优,提出基于萤火虫群算法优化最小二乘支持向... 滚动轴承故障诊断是提高设备利用率、降低运行及维护成本关键。最小二乘支持向量回归机为有效的故障诊断方法,为解决其参数选取受限于主观经验问题,将萤火虫群算法用于惩罚系数C与核参数σ寻优,提出基于萤火虫群算法优化最小二乘支持向量回归机的滚动轴承故障诊断方法。实验结果表明,该方法能对滚动轴承故障位置及程度进行准确诊断,与常规最小二乘支持向量回归机、BP神经网络相比精度更高,由此验证该方法的可靠性。 展开更多
关键词 滚动轴承 故障诊断 最小二乘支持向量回归 萤火虫群算法
在线阅读 下载PDF
基于最小二乘支持向量回归机的矿浆酸碱度鲁棒软测量 被引量:3
12
作者 任会峰 阳春华 +2 位作者 周璇 桂卫华 鄢锋 《上海交通大学学报》 EI CAS CSCD 北大核心 2011年第8期1136-1139,1145,共5页
针对酸碱度在线检测仪稳定性差、维护保养成本高等不足及人工检测严重滞后的问题,结合泡沫浮选工艺机理分析,以在线泡沫视频图像表观特征为辅助变量,采用最小二乘支持向量回归机(Least Squares Support Vector Regression,LSSVR)实现了... 针对酸碱度在线检测仪稳定性差、维护保养成本高等不足及人工检测严重滞后的问题,结合泡沫浮选工艺机理分析,以在线泡沫视频图像表观特征为辅助变量,采用最小二乘支持向量回归机(Least Squares Support Vector Regression,LSSVR)实现了泡沫浮选矿浆酸碱度的软测量.将不同特性的核函数凸组合以提高模型性能,并采用最近邻山峰聚类算法约简核矩阵,降低计算复杂度,利用偏最小二乘回归提高模型鲁棒性.工业运行数据仿真结果表明,建立的软测量模型能够连续在线检测矿浆的酸碱度,并获得了比标准LSSVR、加权LSSVR及多核LSSVR更高的预测精度,可满足工业要求. 展开更多
关键词 矿物浮选 酸碱度 软测量 最小二乘支持向量回归 减法聚类
在线阅读 下载PDF
基于最小二乘支持向量回归的鹅肉弹性的可见-近红外光谱测定 被引量:3
13
作者 赵进辉 袁海超 +2 位作者 刘木华 涂冬成 吁芳 《核农学报》 CAS CSCD 北大核心 2012年第8期1154-1158,共5页
为简化鹅肉弹性的可见-近红外光谱模型和提高预测精度,采用联合区间偏最小二乘法(synergyinterval partial least square algorithm,siPLS)结合遗传算法(Genetic algorithm,GA)提取可见-近红外光谱特征波长,用最小二乘支持向量回归(leas... 为简化鹅肉弹性的可见-近红外光谱模型和提高预测精度,采用联合区间偏最小二乘法(synergyinterval partial least square algorithm,siPLS)结合遗传算法(Genetic algorithm,GA)提取可见-近红外光谱特征波长,用最小二乘支持向量回归(least square support vector for regression,LSSVR)建立鹅肉弹性的预测模型。试验以万能试验机获取恢复距离S作为鹅肉弹性实际值。在模型建立过程中,先利用sym8小波的2层分解对原始的可见-近红外光谱进行光谱预处理;然后用siPLS优选出4个特征光谱子区间(分别为第3、5、9、13子区间),在这4个特征光谱子区间内继续用GA优选出74个特征波长,并建立基于LSSVR的鹅肉弹性的预测模型。模型预测集的决定系数(R2)和预测均方根误差(root mean squarederror of prediction,RMSEP)分别为0.9096和0.0588。试验结果表明,siPLS结合GA法能够有效提取光谱中的鹅肉弹性对应的特征波长,有利于提高LSSVR模型预测鹅肉弹性的精度。 展开更多
关键词 可见-近红外光谱 弹性 最小二乘支持向量回归 联合区间偏最小二乘 遗传算法
在线阅读 下载PDF
基于多核最小二乘支持向量回归的TDOA-DOA映射方法 被引量:6
14
作者 张峰 陈华伟 李妍文 《数据采集与处理》 CSCD 北大核心 2017年第3期540-549,共10页
基于到达时间差(Time difference of arrival,TDOA)估计的方法是声源波达方向(Direction of arrival,DOA)估计中的一类重要方法。其中由TDOA到DOA的映射是该类方法的关键步骤。本文提出了一种基于多核聚类最小二乘支持向量回归(Least-sq... 基于到达时间差(Time difference of arrival,TDOA)估计的方法是声源波达方向(Direction of arrival,DOA)估计中的一类重要方法。其中由TDOA到DOA的映射是该类方法的关键步骤。本文提出了一种基于多核聚类最小二乘支持向量回归(Least-squares support vector regression,LS-SVR)的TDOA-DOA映射方法,并且分析了其稀疏化处理后的性能。为了提高混响噪声环境下的TDOA-DOA映射性能,本文还给出了一种基于归一化中值滤波的TDOA估计离群值消除方法。仿真结果表明,本文提出的方法要优于现有的最小二乘方法以及单核LS-SVR方法。 展开更多
关键词 声源波达方向估计 到达时间差估计 最小二乘支持向量回归 多核学习
在线阅读 下载PDF
基于最小二乘支持向量回归的小零件精密测量技术 被引量:4
15
作者 张秀芝 王龙山 于忠党 《农业机械学报》 EI CAS CSCD 北大核心 2009年第8期189-192,共4页
以圆销式齿形链板为研究对象,提出了结合图像处理技术和最小二乘支持向量回归的小零件精密测量方法。以CCD作为传感器采集图像,通过去噪和二值化等图像预处理技术获得待测零件单像素边缘轮廓信息。根据零件特点确定待测区域,并取出该区... 以圆销式齿形链板为研究对象,提出了结合图像处理技术和最小二乘支持向量回归的小零件精密测量方法。以CCD作为传感器采集图像,通过去噪和二值化等图像预处理技术获得待测零件单像素边缘轮廓信息。根据零件特点确定待测区域,并取出该区域中图像点的坐标作为最小二乘支持向量回归的训练点集,进行直线和圆的亚像素回归。对回归结果进行处理得到待测直线间夹角、圆孔直径、圆度误差和圆心距等几何参数。实验结果表明提出的方法不仅收敛速度快,而且精度高、稳定性好。 展开更多
关键词 齿形链板 精密测量 图像处理 最小二乘支持向量回归
在线阅读 下载PDF
自适应遗传优化的最小二乘支持向量回归机在煤粉着火温度建模中的应用 被引量:3
16
作者 韦红旗 牛中敏 +1 位作者 江文豪 叶亚兰 《燃烧科学与技术》 EI CAS CSCD 北大核心 2011年第3期191-195,共5页
针对煤粉着火温度与煤质指标间的非线性关系,提出了基于自适应遗传算法和最小二乘支持向量回归机的煤粉着火温度预测模型.通过对实验数据进行预测评判,并与常规的最小二乘支持向量回归机模型和BP神经网络模型相比较,以验证此模型的可靠... 针对煤粉着火温度与煤质指标间的非线性关系,提出了基于自适应遗传算法和最小二乘支持向量回归机的煤粉着火温度预测模型.通过对实验数据进行预测评判,并与常规的最小二乘支持向量回归机模型和BP神经网络模型相比较,以验证此模型的可靠性和精确性.结果表明,该模型是合理可行的,该模型比传统计算模型具有更好的泛化能力,能更准确地预测煤粉着火温度.采用该模型对输入变量的权重进行分析,得到的结果与机理分析一致,为解决此类问题提供了新途径. 展开更多
关键词 最小二乘支持向量回归 自适应遗传算法 煤粉 着火温度预测
在线阅读 下载PDF
鲁棒最小二乘支持向量回归机 被引量:2
17
作者 王快妮 马金凤 丁小帅 《计算机应用》 CSCD 北大核心 2011年第8期2111-2114,共4页
针对最小二乘支持向量回归机(LS-SVR)对异常值较敏感的问题,通过设置异常值所造成的损失上界,提出一种非凸的Ramp损失函数。该损失函数导致相应的优化问题的非凸性,利用凹凸过程(CCCP)将非凸优化问题转化为凸优化问题。给出Newton算法... 针对最小二乘支持向量回归机(LS-SVR)对异常值较敏感的问题,通过设置异常值所造成的损失上界,提出一种非凸的Ramp损失函数。该损失函数导致相应的优化问题的非凸性,利用凹凸过程(CCCP)将非凸优化问题转化为凸优化问题。给出Newton算法进行求解并分析了算法的计算复杂度。数据集测试的结果表明,与最小二乘支持向量回归机相比,该算法对异常值具有较强的鲁棒性,获得了更优的泛化能力,同时在运行时间上也具有明显优势。 展开更多
关键词 最小二乘支持向量回归 鲁棒 异常值 损失函数 凹凸过程
在线阅读 下载PDF
凝汽器故障诊断最小二乘支持向量回归机模型及仿真应用 被引量:3
18
作者 文孝强 徐志明 +1 位作者 孙媛媛 孙灵芳 《汽轮机技术》 北大核心 2010年第2期130-132,136,共4页
研究了凝汽器故障诊断问题。选取了32个故障征兆作为模型的输入,建立了基于最小二乘支持向量回归机的凝汽器故障模型。将所提出的故障诊断方法应用于某发电厂300MW火电厂仿真机凝汽器的故障诊断中,结果表明该方法行之有效,且易于工程实现。
关键词 凝汽器 最小二乘支持向量回归 诊断模型 仿真机
在线阅读 下载PDF
一种大样本学习最小二乘支持向量回归模型 被引量:3
19
作者 袁从贵 徐淑琼 张新政 《控制工程》 CSCD 北大核心 2017年第9期1768-1773,共6页
针对最小二乘支持向量回归大样本学习效率偏低的问题,提出了一种最小二乘支持向量回归快速学习算法模型。首先将欧氏距离进行推广,设计了一种支持向量回归高维特征空间相似性测度标准,然后构建了无监督核聚类分析支持向量选择算法,再通... 针对最小二乘支持向量回归大样本学习效率偏低的问题,提出了一种最小二乘支持向量回归快速学习算法模型。首先将欧氏距离进行推广,设计了一种支持向量回归高维特征空间相似性测度标准,然后构建了无监督核聚类分析支持向量选择算法,再通过Nystr?m方法逼近原最小二乘支持向量回归学习问题的解。最后采用Sinc函数和多个数据集测试了模型的性能。实验结果表明,在预测误差没有明显下降的情况下,该模型能克服最小二乘支持向量回归处理大样本学习问题时的内存溢出错误,显著提高其学习效率。 展开更多
关键词 大样本学习 最小二乘支持向量回归 核聚类 Nystr?m逼近
在线阅读 下载PDF
运用最小二乘支持向量回归机和CARRX模型对股市波动率的预测 被引量:3
20
作者 耿立艳 马军海 《统计与决策》 CSSCI 北大核心 2008年第13期48-50,共3页
条件自回归极差模型(CARRX)是一类新的描述波动率的模型。为了提高CARRX类模型的预测精度,文章将最小二乘支持向量回归机(LSSVR)应用于CARRX模型。先将CARRX模型转化成ARMAX形式,再利用LSSVR对ARMAX模型的参数进行估计(LSSVR-ARMAX)。... 条件自回归极差模型(CARRX)是一类新的描述波动率的模型。为了提高CARRX类模型的预测精度,文章将最小二乘支持向量回归机(LSSVR)应用于CARRX模型。先将CARRX模型转化成ARMAX形式,再利用LSSVR对ARMAX模型的参数进行估计(LSSVR-ARMAX)。通过对沪深300指数的预测实证分析,发现无论是采用直接预测还是迭代预测,LSSVR-ARMAX模型的样本外预测能力均优于Perez-Cruz(2003)提出的方法;LSSVR的估计方法能够在长期预测中捕捉到极差波动率的变动趋势,而CARRX类模型对中短期极差波动率的预测准确度较高。 展开更多
关键词 最小二乘支持向量回归 条件自回归极差模型 波动率
在线阅读 下载PDF
上一页 1 2 140 下一页 到第
使用帮助 返回顶部