期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
改进粒子群算法优化的卫星钟差组合预报模型 被引量:5
1
作者 刘赞 陈西宏 +2 位作者 孙际哲 刘强 张群 《探测与控制学报》 CSCD 北大核心 2015年第1期94-98,共5页
针对现有单一导航卫星钟差预报模型存在预报精度不高的问题,提出了改进粒子群算法优化的组合预报模型。该模型利用差分自回归移动平均模型(ARIMA)和最小二乘向量机(LSSVM)模型的特点,首先建立ARIMA模型预报钟差数据的线性部分,并得... 针对现有单一导航卫星钟差预报模型存在预报精度不高的问题,提出了改进粒子群算法优化的组合预报模型。该模型利用差分自回归移动平均模型(ARIMA)和最小二乘向量机(LSSVM)模型的特点,首先建立ARIMA模型预报钟差数据的线性部分,并得到预报残差;然后,根据残差建立LSSVM模型预报非线性部分,最后的预报结果即两个预报结果之和。同时引入随优化代数变化的惯性权值和加速度因子,来提高粒子群(PSO)算法寻优能力,并用其优化组合预报模型中LSSVM部分的惩罚因子和核函数参数选取过程,以提高模型的预报精度。实例与结果分析表明,组合模型较单一模型在预报精度上有30%~50%的提高,为导航卫星高精度短期钟差预报提供了一种新思路。 展开更多
关键词 卫星钟差 钟差预报 差分自回归移动平均模型 最小二乘向量机模型 改进粒子群
在线阅读 下载PDF
SVM model for estimating the parameters of the probability-integral method of predicting mining subsidence 被引量:11
2
作者 ZHANG Hua WANG Yun-jia LI Yong-feng 《Mining Science and Technology》 EI CAS 2009年第3期385-388,394,共5页
A new mathematical model to estimate the parameters of the probability-integral method for mining subsidence prediction is proposed.Based on least squares support vector machine(LS-SVM) theory, it is capable of improv... A new mathematical model to estimate the parameters of the probability-integral method for mining subsidence prediction is proposed.Based on least squares support vector machine(LS-SVM) theory, it is capable of improving the precision and reliability of mining subsidence prediction.Many of the geological and mining factors involved are related in a nonlinear way.The new model is based on statistical theory(SLT) and empirical risk minimization(ERM) principles.Typical data collected from observation stations were used for the learning and training samples.The calculated results from the LS-SVM model were compared with the prediction results of a back propagation neural network(BPNN) model.The results show that the parameters were more precisely predicted by the LS-SVM model than by the BPNN model.The LS-SVM model was faster in computation and had better generalized performance.It provides a highly effective method for calculating the predicting parameters of the probability-integral method. 展开更多
关键词 mining subsidence probability-integral method least squares support vector machine artificial neural networks
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部