期刊文献+
共找到3,240篇文章
< 1 2 162 >
每页显示 20 50 100
基于蝙蝠算法优化最小二乘双支持向量机的变压器故障诊断 被引量:60
1
作者 陈欢 彭辉 +2 位作者 舒乃秋 张开轩 魏岸 《高电压技术》 EI CAS CSCD 北大核心 2018年第11期3664-3671,共8页
为了提高变压器的故障诊断精度,提出了一种基于蝙蝠算法(BA)优化最小二乘双支持向量机(LS-TSVM)的变压器故障诊断方法。该方法针对变压器故障诊断过程中的多分类问题,通过计算类间相异度矩阵自下而上构建哈夫曼树,结合LS-TSVM建立... 为了提高变压器的故障诊断精度,提出了一种基于蝙蝠算法(BA)优化最小二乘双支持向量机(LS-TSVM)的变压器故障诊断方法。该方法针对变压器故障诊断过程中的多分类问题,通过计算类间相异度矩阵自下而上构建哈夫曼树,结合LS-TSVM建立了多类分类故障诊断模型,然后采用蝙蝠算法对模型中LS-TSVM分类器的参数进行优化。利用该方法对变压器进行故障诊断,实例仿真结果表明:与粒子群优化支持向量机(PSO-SVM)方法相比,所提方法不仅训练时间显著缩短,而且故障诊断精度更高,对于高温过热、低能放电故障的诊断精度均明显高于PSO-SVM方法。仿真结果说明所提方法在变压器故障诊断中具有较高的优越性。 展开更多
关键词 变压器 油中溶解气体分析 最小二乘双支持向量机 哈夫曼树 蝙蝠算法 故障诊断
在线阅读 下载PDF
基于改进金豺算法优化最小二乘法支持向量机的磨削表面粗糙度预测
2
作者 朱文博 张淑权 +1 位作者 张梦梦 迟玉伦 《表面技术》 北大核心 2025年第16期165-181,共17页
目的磨削过程中粗糙度直接影响产品质量,为有效预测工件磨削表面粗糙度,基于声发射和振动信号提出一种改进金豺算法(IGJO)优化最小二乘法支持向量(LSSVM)的磨削表面粗糙度预测方法。方法为增强信号特征与磨削表面粗糙度相关性,利用皮尔... 目的磨削过程中粗糙度直接影响产品质量,为有效预测工件磨削表面粗糙度,基于声发射和振动信号提出一种改进金豺算法(IGJO)优化最小二乘法支持向量(LSSVM)的磨削表面粗糙度预测方法。方法为增强信号特征与磨削表面粗糙度相关性,利用皮尔逊相关分析和主成分分析(PCA)对信号特征进行筛选,降低特征之间的多重共线性,降低模型复杂度;为改善磨削表面粗糙度预测模型的性能,对于金豺算法(GJO)易陷入局部最优问题,在GJO基础上引入佳点集初始化种群、非线性能量因子更新策略以及融合鲸鱼优化算法改进搜索策略,提升算法的初始种群多样性、收敛精度和全局搜索能力;为提高磨削表面粗糙度预测模型有效性,利用IGJO对LSSVM进行参数寻优,建立磨削表面粗糙度预测模型。结果通过轴承套圈内滚道磨削加工实验数据进行验证,结果表明IGJO-LSSVM磨削表面粗糙度预测模型能有效预测粗糙度值,预测精度为95.223%,RMSE值为0.0133,MAPE值为4.776%,R2值为0.956,均优于GJO-LSSVM、LSSVM和BP神经网络模型。结论通过IGJO优化后的LSSVM模型可实现磨削表面粗糙度有效预测,同时能够避免传统LSSVM容易陷入局部极小值的问题,对提高产品磨削质量具有重要意义。 展开更多
关键词 磨削表面粗糙度 轴承套圈 最小二乘支持向量 金豺算法
在线阅读 下载PDF
基于马氏距离的密度加权最小二乘孪生支持向量机
3
作者 吕莉 贺智鹏 +3 位作者 张法滢 张莹莹 康平 李院民 《江西师范大学学报(自然科学版)》 北大核心 2025年第1期37-48,共12页
最小二乘孪生支持向量机基于欧氏距离判断样本相似性并搭建模型的方法未考虑样本不同维度的方差差异对决策超平面位置的影响,导致模型处理此类样本精度不高且对噪声样本敏感.鉴于此,该文提出一种基于马氏距离的密度加权最小二乘孪生支... 最小二乘孪生支持向量机基于欧氏距离判断样本相似性并搭建模型的方法未考虑样本不同维度的方差差异对决策超平面位置的影响,导致模型处理此类样本精度不高且对噪声样本敏感.鉴于此,该文提出一种基于马氏距离的密度加权最小二乘孪生支持向量机.该算法利用马氏距离替换欧氏距离构造密度加权策略,充分考虑点与分布的关系,给予噪声数据较低的权重,降低算法对噪声的敏感性;同时结合马氏距离核函数计算样本内协方差矩阵,消除样本特征值之间方差的差异,更准确地体现样本间的相关性,从而优化决策超平面.实验采用人工数据集和UCI数据集,实验结果表明:该算法比同类型分类算法具有更高的分类精确度和泛化能力,能够有效区分在样本中的噪声数据并赋予合适的权重值,提升分类器的鲁棒性. 展开更多
关键词 支持向量 马氏距离 核函数 密度加权 最小二乘损失函数
在线阅读 下载PDF
基于最小二乘支持向量机和车辆荷载监测数据的悬索桥吊索疲劳寿命预测 被引量:1
4
作者 曾国良 邓扬 《桥梁建设》 北大核心 2025年第1期41-48,共8页
针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数... 针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数据的相关性模型,建模过程中考虑LSSVM模型输入与输出的最优模式以及训练数据长度;建立1根吊索(以29号吊索为例)与其它吊索的日疲劳损伤之间的相关性模型,预测其它吊索的疲劳损伤;考虑日车流量和等效车总重的增长,进行吊索疲劳寿命预测。结果表明:对于29号吊索的4种LSSVM模型,模型Ⅳ的边界条件较其它3种模型更为合理,测试数据的平均相对误差低于模型Ⅰ~Ⅲ;该方法将日疲劳损伤与车辆荷载监测数据进行直接关联;LSSVM相关性模型的预测能力依赖于训练样本的数量,当训练数据长度为284 d时,模型Ⅳ的预测能力较强,其平均相对误差低于5.5%;同时考虑日车流量和等效车总重增长时,疲劳累积损伤显著增长。 展开更多
关键词 悬索桥 吊索 结构健康监测 车辆荷载 疲劳损伤 疲劳寿命 最小二乘支持向量 相关性模型
在线阅读 下载PDF
基于最小二乘支持向量机解耦的无轴承磁通切换电机转子径向磁悬浮逆系统控制
5
作者 林佳泷 周扬忠 +1 位作者 陈东远 梁彤伟 《电工技术学报》 北大核心 2025年第14期4534-4546,共13页
针对无轴承磁通切换电机非线性、多变量、强耦合特性,该文提出一种转子径向磁悬浮解耦控制策略。首先,采用最小二乘支持向量机的方法对悬浮力模型中的耦合电磁力部分进行拟合补偿,实现悬浮系统初步解耦;然后,验证悬浮系统可逆性,并按照... 针对无轴承磁通切换电机非线性、多变量、强耦合特性,该文提出一种转子径向磁悬浮解耦控制策略。首先,采用最小二乘支持向量机的方法对悬浮力模型中的耦合电磁力部分进行拟合补偿,实现悬浮系统初步解耦;然后,验证悬浮系统可逆性,并按照逆系统理论设计伪线性复合悬浮系统,进一步实现了悬浮系统的线性化解耦;最后,对解耦后的悬浮系统设计闭环控制器,对悬浮闭环系统稳定性进行理论分析。实验结果验证,所提控制策略实现了无轴承磁通切换电机悬浮系统的动态解耦,提升了悬浮系统的动、静态性能。 展开更多
关键词 无轴承磁通切换电 逆系统 最小二乘支持向量 径向磁悬浮 解耦控制
在线阅读 下载PDF
基于半监督学习结合最小二乘支持向量机的蝴蝶兰生长期最佳环境模型构建
6
作者 陈俞帆 白芮羽 +3 位作者 陈邦云 王华 敬勇 李亚硕 《农业工程》 2025年第4期38-42,共5页
蝴蝶兰是重要的观赏植物,生长环境对其生长发育具有显著影响。传统栽培方法多依赖经验,缺乏科学性和精准性。收集蝴蝶兰生长过程中的环境参数和生长状态指标,筛选关键特征,采用半监督学习结合最小二乘支持向量机方法,训练深度学习模型... 蝴蝶兰是重要的观赏植物,生长环境对其生长发育具有显著影响。传统栽培方法多依赖经验,缺乏科学性和精准性。收集蝴蝶兰生长过程中的环境参数和生长状态指标,筛选关键特征,采用半监督学习结合最小二乘支持向量机方法,训练深度学习模型用于预测蝴蝶兰生长最佳环境条件。通过自学习方法,模型能够从大量未标记样本中筛选出置信度高的样本,增加训练样本数量,提高模型的泛化能力和预测准确性。试验结果表明,当概率阈值设置为97%时,模型准确性最高,均方根误差3.974、决定系数0.975。该模型可为蝴蝶兰的科学栽培提供新的解决方案。 展开更多
关键词 半监督学习 最小二乘支持向量 环境模型 蝴蝶兰 智慧农业
在线阅读 下载PDF
基于沙地猫群优化–最小二乘支持向量机的动态NOx排放预测 被引量:6
7
作者 金秀章 史德金 乔鹏 《中国电机工程学报》 EI CSCD 北大核心 2024年第1期182-190,I0015,共10页
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。... 针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。首先利用k近邻互信息计算时间延迟的同时筛选辅助变量。然后,基于SCSO算法进行输入变量阶次的选择。使用包含辅助变量时间延迟和阶次的信息作为模型的输入,SCSO算法优化最小二乘支持向量机参数,建立动态NOx排放最小二乘支持向量机预测模型(SCSO-LSSVM动态软测量模型)。最后将模型与未加入迟延的LSSVM模型,加入迟延的LSSVM模型和粒子群优化算法(particle swarm optimization,PSO)优化最小二乘支持向量机参数的动态软测量模型进行对比验证。结果表明,相较于其他模型,该文建立SCSO-LSSVM动态软测量模型均方根误差、平均绝对误差、平均绝对误差最小,预测精度最高,而且在NOx浓度剧烈波动时也能够较好地预测NOx浓度,具有很好的动态特性。 展开更多
关键词 NOx浓度 k近邻互信息 沙地猫群优化算法 最小二乘支持向量 软测量模型
在线阅读 下载PDF
鲁棒的模糊最小二乘双参数间隔支持向量机算法
8
作者 杨贵燕 黄成泉 +3 位作者 罗森艳 蔡江海 王顺霞 周丽华 《河北大学学报(自然科学版)》 CAS 北大核心 2024年第6期653-665,共13页
针对最小二乘双参数间隔支持向量机(LSTPMSVM)对噪声敏感且在分类过程中易受异常值影响的问题,提出了一种鲁棒的模糊最小二乘双参数间隔支持向量机算法(RFLSTPMSVM).该算法利用松弛变量的2范数使得优化问题具有强凸性,再根据隶属度为每... 针对最小二乘双参数间隔支持向量机(LSTPMSVM)对噪声敏感且在分类过程中易受异常值影响的问题,提出了一种鲁棒的模糊最小二乘双参数间隔支持向量机算法(RFLSTPMSVM).该算法利用松弛变量的2范数使得优化问题具有强凸性,再根据隶属度为每个样本分配相应的权重,有效降低异常值带来的影响.同时,在目标函数中引入K-近邻加权,考虑样本之间的局部信息,提高模型的分类准确率.此外,通过求解简单的线性方程组来优化该算法,而不是求解二次规划问题,使模型具有较快的计算速度.在UCI(university of California irvine)数据集上对该算法进行性能评估,并与TWSVM、LSTSVM、LSTPMSVM和ULSTPMSVM 4种算法进行比较.数值实验结果表明,该算法具有更好的泛化性能. 展开更多
关键词 参数间隔支持向量 孪生支持向量 模糊隶属度 K-近邻
在线阅读 下载PDF
基于改进最小二乘支持向量机组合模型的深基坑沉降变形预测 被引量:7
9
作者 刘清龙 吕颖慧 +1 位作者 秦磊 赵鹏 《济南大学学报(自然科学版)》 CAS 北大核心 2024年第1期8-14,共7页
为了提高深基坑沉降变形预测精度,及时为深基坑支护施工提供指导,提出一种改进最小二乘支持向量机组合模型;通过引入自适应噪声完备集合经验模态分解方法分解原始深基坑沉降变形数据,并结合粒子群优化算法和遗传算法对最小二乘支持向量... 为了提高深基坑沉降变形预测精度,及时为深基坑支护施工提供指导,提出一种改进最小二乘支持向量机组合模型;通过引入自适应噪声完备集合经验模态分解方法分解原始深基坑沉降变形数据,并结合粒子群优化算法和遗传算法对最小二乘支持向量机进行参数寻优,对分解的数据分别训练、预测后再叠加,得到最终预测结果;应用所提出模型对济南市某深基坑的累积沉降量进行预测,同时与其他模型对比,验证所提出模型的实用性和优越性。结果表明:所提出模型预测深基坑累积沉降量的平均相对误差为0.035%,均方误差为0.0809 mm^(2),均方根误差为0.2838 mm,所提出模型的准确性远优于其他模型的;自适应噪声完备集合经验模态分解方法的引入更有利于在深基坑沉降变形预测方面发挥最小二乘支持向量机的优势。 展开更多
关键词 深基坑沉降变形 最小二乘支持向量 经验模态分解 粒子群优化算法 遗传算法
在线阅读 下载PDF
基于遗传算法优化最小二乘支持向量机的矿工疲劳程度识别模型 被引量:2
10
作者 田水承 任治鹏 毛俊睿 《矿业安全与环保》 CAS 北大核心 2024年第4期110-116,共7页
为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后... 为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后,采用主成分分析法对选取的特征指标进行降维处理,建立表征矿工疲劳程度的特征集;在此基础上,利用遗传算法优化最小二乘支持向量机的关键参数,构建矿工疲劳程度识别模型。结果表明:选取的矿工疲劳程度特征指标能够有效反映矿工的疲劳程度;相较GA-SVM和LSSVM模型,融合GA-LSSVM模型可显著提高矿工疲劳程度的识别准确率(平均识别准确率为96.87%)。构建的矿工疲劳程度识别模型可较为高效地识别矿工的疲劳程度,对煤矿人因事故的防控具有一定的现实指导意义。 展开更多
关键词 矿工 疲劳识别 心电信号 最小二乘支持向量 遗传算法
在线阅读 下载PDF
基于粒子群优化和最小二乘支持向量机的储罐腐蚀速率预测 被引量:2
11
作者 王明慧 党鹏飞 +1 位作者 杨铮鑫 龚博 《腐蚀与防护》 CAS CSCD 北大核心 2024年第8期71-76,共6页
利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。... 利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。结果表明:使用PSOLSSVM获得的腐蚀速率预测结果与实际腐蚀速率较为吻合,罐顶、第一层罐壁、罐底预测结果的平均绝对百分误差分别为2.265%、3.077%、1.18%,均方根误差分别为0.010%、0.012%、0.011%,决定系数分别为0.973、0.982、0.976。该方法可以对储罐内腐蚀速率进行有效的预测。 展开更多
关键词 粒子群优化(PSO) 最小二乘支持向量(LSSVM) 腐蚀速率预测
在线阅读 下载PDF
基于自适应双向加权最小二乘支持向量机的超短期负荷预测 被引量:27
12
作者 王岗 姜杰 +1 位作者 唐昆明 张太勤 《电力系统保护与控制》 EI CSCD 北大核心 2010年第19期142-146,共5页
应用模糊加权最小二乘支持向量机对超短期负荷进行预测,为了体现离预测点越远的历史负荷数据对预测点负荷值的影响越不明显的特点,即'近大远小'的原则,在双向,即横向(输入样本)与纵向(训练样本集)引入时间域的隶属分布。并用快... 应用模糊加权最小二乘支持向量机对超短期负荷进行预测,为了体现离预测点越远的历史负荷数据对预测点负荷值的影响越不明显的特点,即'近大远小'的原则,在双向,即横向(输入样本)与纵向(训练样本集)引入时间域的隶属分布。并用快速留一法在线优化模型的参数,实现了相关参数的自适应选择,克服了应用固定系数进行预测的缺点。应用某地区的负荷数据进行了仿真预测,并应用不同的方法进行了对比。结果表明,所提出的方法与传统方法相比提高了超短期负荷的预测精度。 展开更多
关键词 最小二乘支持向量 向加权 快速留一法 超短期负荷预测 自适应参数选择
在线阅读 下载PDF
双加权最小二乘支持向量机的短期风速预测 被引量:11
13
作者 潘学萍 史宇伟 张弛 《电力系统及其自动化学报》 CSCD 北大核心 2014年第1期13-17,66,共6页
提出了双加权最小二乘支持向量机的短期风速预测方法。考虑到离预测点越远的历史风速数据对预测值的影响越弱,对训练样本中输入向量数据进行第1次加权,以体现不同元素对预测影响的差异。同时为区分训练样本的差异性,降低异常样本的干扰... 提出了双加权最小二乘支持向量机的短期风速预测方法。考虑到离预测点越远的历史风速数据对预测值的影响越弱,对训练样本中输入向量数据进行第1次加权,以体现不同元素对预测影响的差异。同时为区分训练样本的差异性,降低异常样本的干扰,对训练样本进行第2次加权。对双加权后的训练样本,采用加权最小二乘支持向量机模型进行预测,降低了对异常点的敏感度,实现了对不同样本的区别对待。根据某实测风速数据进行了风速预测,结果表明,所提方法能提高风速预测精度。 展开更多
关键词 风速预测 加权方法 加权最小二乘支持向量 短期预测
在线阅读 下载PDF
Laplacian双联最小二乘支持向量机用于早期故障诊断 被引量:6
14
作者 李锋 汤宝平 郭胤 《振动与冲击》 EI CSCD 北大核心 2017年第16期85-92,共8页
提出基于Laplacian双联最小二乘支持向量机(Laplacian Twin Least Squares Support Vector Machine,LapTLSSVM)半监督模式识别的新型早期故障诊断方法。用时、频域特征集广泛收集旋转机械不同早期故障的特征信息,再用提升半监督局部Fis... 提出基于Laplacian双联最小二乘支持向量机(Laplacian Twin Least Squares Support Vector Machine,LapTLSSVM)半监督模式识别的新型早期故障诊断方法。用时、频域特征集广泛收集旋转机械不同早期故障的特征信息,再用提升半监督局部Fisher判别分析(Enhanced Semi-Supervised Local Fisher Discriminant Analysis,ESSLFDA)将高维时、频域特征集约简为具有更好类区分度的低维特征向量,并输入到Lap-TLSSVM中进行早期故障诊断。Lap-TLSSVM引入了包含大量无标签数据信息的流形规则实现半监督学习;其目标函数只含等式约束条件,且用共轭梯度法求解目标函数的线性方程组以加速训练过程。所提出的方法在训练样本非常稀少的情况下具有较高的诊断精度和计算效率。深沟球轴承早期故障诊断实验验证了该方法的有效性。 展开更多
关键词 旋转 流形学习 Laplacian最小二乘支持向量 半监督学习 故障诊断
在线阅读 下载PDF
基于双近邻模式和最小二乘支持向量机的SAR景象匹配区选择 被引量:5
15
作者 程华 田金文 《宇航学报》 EI CAS CSCD 北大核心 2009年第4期1626-1632,共7页
通过对景象匹配过程的分析,从模式识别的角度阐述了误匹配产生的原因。从避免误匹配的角度定义了双近邻度、最小距离以反映SAR景象的独特性和匹配的准确性,并结合反映地面景物稳定性的边缘密度,构建反映SAR景象适配性的分类特征向量。... 通过对景象匹配过程的分析,从模式识别的角度阐述了误匹配产生的原因。从避免误匹配的角度定义了双近邻度、最小距离以反映SAR景象的独特性和匹配的准确性,并结合反映地面景物稳定性的边缘密度,构建反映SAR景象适配性的分类特征向量。基于该分类特征向量,利用最小二乘支持向量机将SAR景象基准图子图划分为匹配正确的子图和匹配错误的子图,并由匹配正确的子图类构成SAR景象适配区。试验结果表明,提出的方法能够有效地规划出所需的SAR景象匹配区。 展开更多
关键词 匹配区选择 近邻模式 最小二乘支持向量 SAR 景象匹配
在线阅读 下载PDF
基于最小二乘支持向量机的农村土地利用空间优化配置方法及实例分析 被引量:3
16
作者 黄晓磊 冯长委 《现代农业科技》 2024年第8期185-188,共4页
因为农村各类用地数据具有样本小、非线性等特点,导致土地利用空间配置结果的适宜性较差,所以本文提出基于最小二乘支持向量机的农村土地利用空间优化配置方法。基于最小二乘支持向量机预测农村土地利用空间格局,得到各类用地面积数据,... 因为农村各类用地数据具有样本小、非线性等特点,导致土地利用空间配置结果的适宜性较差,所以本文提出基于最小二乘支持向量机的农村土地利用空间优化配置方法。基于最小二乘支持向量机预测农村土地利用空间格局,得到各类用地面积数据,对各类用地进行满足经济效益与生态效益最大化的多目标函数的优化配置。实例结果表明,农村土地利用空间优化配置结果中各用地类型高度适宜区域的面积占比均超过75%,证实了设计方法的合理性。 展开更多
关键词 最小二乘支持向量 农村土地 土地利用 空间优化配置
在线阅读 下载PDF
添加Universum数据的最小二乘投影双支持向量机 被引量:1
17
作者 鲁淑霞 佟乐 朱晨旭 《河北大学学报(自然科学版)》 CAS 北大核心 2016年第1期94-99,共6页
通过添加Universum数据,引入了与分类样本无关的样本,并借此引入了先验域信息,构建了添加Universum数据的最小二乘投影双支持向量机(ULSPTSVM).此外,还将方法扩展到递归学习方法,用于进一步提高ULSPTSVM的分类性能.实验表明,ULSPTSVM方... 通过添加Universum数据,引入了与分类样本无关的样本,并借此引入了先验域信息,构建了添加Universum数据的最小二乘投影双支持向量机(ULSPTSVM).此外,还将方法扩展到递归学习方法,用于进一步提高ULSPTSVM的分类性能.实验表明,ULSPTSVM方法可以直接减少带有Universum数据的双支持向量机(USVM)方法的训练时间,而且在多数情况下ULSPTSVM方法的测试精度优于最小二乘投影双支持向量机(LSPTSVM)方法的测试精度. 展开更多
关键词 Universum数据 支持向量 支持向量 投影
在线阅读 下载PDF
一种稳健最小二乘支持向量机GNSS-IR土壤湿度反演方法
18
作者 王式太 蒋威 +2 位作者 杨可心 马岳 姜新伟 《遥感信息》 CSCD 北大核心 2024年第2期43-51,共9页
全球卫星导航系统干涉测量(global navigation satellite system interferometric reflectometry,GNSS-IR)是一种新型的遥感技术,可利用多径信噪比序列的延迟相位值反演土壤湿度值,其延迟相位求解通常使用信赖域算法,该算法一定程度依... 全球卫星导航系统干涉测量(global navigation satellite system interferometric reflectometry,GNSS-IR)是一种新型的遥感技术,可利用多径信噪比序列的延迟相位值反演土壤湿度值,其延迟相位求解通常使用信赖域算法,该算法一定程度依赖初值设定。文章先使用遗传算法求解出延迟相位粗略值,再将该数值作为信赖域的初值用于迭代计算,提升了部分卫星延迟相位的求解精度及稳定性。此外,针对多径信噪比序列易受环境因素影响引入粗差,进而影响模型反演精度,文章采用稳健最小二乘支持向量机作为反演模型,同时又考虑到多星融合的时空尺度优势,将该模型分别做了单星反演至五星融合反演,并与最小二乘支持向量机模型做对比。分析结果表明,当三星融合时该模型提升精度最为明显,MAE最高可降低15.6%,RMSE最高可降低12.0%。 展开更多
关键词 GNSS-IR 土壤湿度 遗传算法 多卫星融合 稳健最小二乘支持向量
在线阅读 下载PDF
邻域信息加权的最小二乘投影双支持向量聚类
19
作者 王顺霞 黄成泉 +2 位作者 罗森艳 杨贵燕 蔡江海 《电子测量技术》 北大核心 2024年第12期59-70,共12页
针对最小二乘投影双支持向量聚类(LSPTSVC)算法未充分利用样本邻域之间的潜在信息、实用性不强等问题,本文提出了一种高效的邻域信息加权的最小二乘投影双支持向量聚类算法。首先引入相对密度概念充分提取数据集中同类数据点之间的局部... 针对最小二乘投影双支持向量聚类(LSPTSVC)算法未充分利用样本邻域之间的潜在信息、实用性不强等问题,本文提出了一种高效的邻域信息加权的最小二乘投影双支持向量聚类算法。首先引入相对密度概念充分提取数据集中同类数据点之间的局部相似性信息,然后计算该点的相对权重,最后利用该权重获得数据点的加权平均值,来更好的反映同类样本的几何结构。实验结果验证了所提算法的有效性,结果表明本文算法在相似的计算复杂度下,相比现有方法取得了更好的聚类准确性,且在真实世界的医学数据集的实际应用中表现出良好的聚类性能。 展开更多
关键词 邻域信息 相对权重 最小二乘 支持聚类
在线阅读 下载PDF
最小二乘双支持向量回归机 被引量:6
20
作者 卢振兴 杨志霞 高新豫 《计算机工程与应用》 CSCD 2014年第23期140-144,162,共6页
提出了一个最小二乘双支持向量回归机,它是在双支持向量回归机基础之上建立的,打破了标准支持向量回归机利用两条平行超平面构造ε带的思想。事实上,它是利用两条不一定平行的超平面构造ε带,每条超平面确定一个半ε-带,从而得到最终的... 提出了一个最小二乘双支持向量回归机,它是在双支持向量回归机基础之上建立的,打破了标准支持向量回归机利用两条平行超平面构造ε带的思想。事实上,它是利用两条不一定平行的超平面构造ε带,每条超平面确定一个半ε-带,从而得到最终的回归函数,这使该回归函数更符合数据本身的分布情况,回归算法有更好的推广能力。另外,最小二乘双支持向量机只需求解两个较小规模的线性方程组就能得到最后的回归函数,其计算复杂度相对较低。数值实验也表明该回归算法在推广能力和计算效率上有一定的优势。 展开更多
关键词 回归问题 支持向量回归 支持向量回归 最小二乘支持向量回归
在线阅读 下载PDF
上一页 1 2 162 下一页 到第
使用帮助 返回顶部