In this paper, we present a least squares version for support vector machines(SVM)classifiers and functionestimation. Due to equality type constraints in the formulation, the solution follows from solving a set of lin...In this paper, we present a least squares version for support vector machines(SVM)classifiers and functionestimation. Due to equality type constraints in the formulation, the solution follows from solving a set of linear equa-tions, instead of quadratic programming for classical SVM. The approach is illustrated on a two-spiral benchmarkclassification problem. The results show that the LS-SVM is an efficient method for solving pattern recognition.展开更多
针对二维DOA(direction of arrival)估计所需阵元数量较多且阵元利用率较低的问题,提出了一种低阵元冗余度的阵列模型,将最小冗余线阵的应用拓展到二维DOA估计领域,降低了阵列冗余度。同时,利用传播算子算法估计二维波达方向,该算法无...针对二维DOA(direction of arrival)估计所需阵元数量较多且阵元利用率较低的问题,提出了一种低阵元冗余度的阵列模型,将最小冗余线阵的应用拓展到二维DOA估计领域,降低了阵列冗余度。同时,利用传播算子算法估计二维波达方向,该算法无需谱峰搜索,且避免了大矩阵的特征分解,在解决计算量问题上有着巨大优势。最小冗余线阵的设置方式,用较少的阵元获得了较大的阵列有效孔径,从而弥补了传播算子算法在低信噪比条件下性能下降的缺点,具有了更好的低信噪比适应能力。该文从理论上论证了三平行最小冗余线阵设置的合理性,仿真实验证明了该方法的有效性。展开更多
文摘In this paper, we present a least squares version for support vector machines(SVM)classifiers and functionestimation. Due to equality type constraints in the formulation, the solution follows from solving a set of linear equa-tions, instead of quadratic programming for classical SVM. The approach is illustrated on a two-spiral benchmarkclassification problem. The results show that the LS-SVM is an efficient method for solving pattern recognition.
文摘针对二维DOA(direction of arrival)估计所需阵元数量较多且阵元利用率较低的问题,提出了一种低阵元冗余度的阵列模型,将最小冗余线阵的应用拓展到二维DOA估计领域,降低了阵列冗余度。同时,利用传播算子算法估计二维波达方向,该算法无需谱峰搜索,且避免了大矩阵的特征分解,在解决计算量问题上有着巨大优势。最小冗余线阵的设置方式,用较少的阵元获得了较大的阵列有效孔径,从而弥补了传播算子算法在低信噪比条件下性能下降的缺点,具有了更好的低信噪比适应能力。该文从理论上论证了三平行最小冗余线阵设置的合理性,仿真实验证明了该方法的有效性。