研究了近红外光谱技术快速检测红曲菌固态发酵过程参数水分含量和pH值的可行性。针对传统基于间隔策略波长选择方法忽略非线性因素的缺点,采用一种基于最小二乘支持向量机(Least squares support vector machines,LS-SVM)非线性模型的...研究了近红外光谱技术快速检测红曲菌固态发酵过程参数水分含量和pH值的可行性。针对传统基于间隔策略波长选择方法忽略非线性因素的缺点,采用一种基于最小二乘支持向量机(Least squares support vector machines,LS-SVM)非线性模型的波长筛选算法:联合区间最小二乘支持向量机(Synergy interval least squares support vector machines,siLS-SVM),并将新算法与相关系数法、iPLS算法、siPLS算法对比。实验结果显示,联合siLS-SVM算法和LS-SVM模型取得了最好的预测效果,水分含量、pH值的预测集相关系数(R p)分别为0.962 1、0.976 1,预测均方根误差(RMSEP)分别为0.012 9、0.145 2,表明模型具有较好的拟合度和预测性能。应用近红外光谱法进行红曲菌固态发酵过程的水分含量和pH值的快速检测可行,该方法为进一步实现其过程参数的在线检测及发酵条件优化提供了技术基础。展开更多
基于间隔策略的信息波长选择是近红外光谱分析中广泛应用的一种方法。针对传统算法忽略非线性因素的缺点,首次考虑将最小二乘支持向量机(least-squares support vector machine,LSSVM)方法应用于间隔选择策略,进而提出了一种新的波长选...基于间隔策略的信息波长选择是近红外光谱分析中广泛应用的一种方法。针对传统算法忽略非线性因素的缺点,首次考虑将最小二乘支持向量机(least-squares support vector machine,LSSVM)方法应用于间隔选择策略,进而提出了一种新的波长选择方法iLSSVM(interval LSSVM)。该算法克服了传统间隔选择算法依赖于线性模型的缺陷,对存在较强非线性的光谱数据能够准确地选择最优信息区间,极大地减少建模变量并显著改善模型预测精度。应用两组业界标准的光谱数据来验证该算法的性能,并和传统方法进行了比较。实验结果表明,在两组数据集上该算法取得的标准预测偏差(root mean square error of prediction,RMSEP)分别比全谱PLS建模降低了20%和4%,比传统的间隔偏最小二乘算法(interval partial least-squares,iPLS)降低了28%和2%。展开更多
文摘基于间隔策略的信息波长选择是近红外光谱分析中广泛应用的一种方法。针对传统算法忽略非线性因素的缺点,首次考虑将最小二乘支持向量机(least-squares support vector machine,LSSVM)方法应用于间隔选择策略,进而提出了一种新的波长选择方法iLSSVM(interval LSSVM)。该算法克服了传统间隔选择算法依赖于线性模型的缺陷,对存在较强非线性的光谱数据能够准确地选择最优信息区间,极大地减少建模变量并显著改善模型预测精度。应用两组业界标准的光谱数据来验证该算法的性能,并和传统方法进行了比较。实验结果表明,在两组数据集上该算法取得的标准预测偏差(root mean square error of prediction,RMSEP)分别比全谱PLS建模降低了20%和4%,比传统的间隔偏最小二乘算法(interval partial least-squares,iPLS)降低了28%和2%。