期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
K-Means算法最优聚类数量的确定 被引量:30
1
作者 何选森 何帆 +1 位作者 徐丽 樊跃平 《电子科技大学学报》 EI CAS CSCD 北大核心 2022年第6期904-912,共9页
K-均值(K-means)聚类算法是学术与工业领域的经典算法。然而,它却具有两个明显缺陷:1)需要预先知道聚类的数量;2)对算法的随机初始化非常敏感。为了解决这两个问题,首先归纳了K-均值算法的基本步骤,并对聚类有效性进行了分析;然后以数... K-均值(K-means)聚类算法是学术与工业领域的经典算法。然而,它却具有两个明显缺陷:1)需要预先知道聚类的数量;2)对算法的随机初始化非常敏感。为了解决这两个问题,首先归纳了K-均值算法的基本步骤,并对聚类有效性进行了分析;然后以数据样本点的欧几里德距离为基础,定义了以聚类数量k为自变量的类间质心距离之和以及类内距离之和,由此构造了聚类有效性评价函数;最后根据经验规则,在聚类数量的可能范围内通过求解聚类有效性评价函数的最小值以确定数据集的最优聚类数量。对UCI的3个数据集Iris、Seeds和Wine的仿真结果说明,提出的聚类有效性评价函数不仅能够准确地反映数据的真实聚类结构,还能有效地抑制算法对随机初始化的敏感性,通过对K-均值算法的多次运行,其结果也验证了聚类有效性评价函数的鲁棒性。 展开更多
关键词 有效性评价函数 k-均值 最优数量 质心距离之和 类内距离之和
在线阅读 下载PDF
R*-树结点自适应聚类分簇算法 被引量:5
2
作者 孙殿柱 孙永伟 +1 位作者 李延瑞 宋洋 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2013年第3期344-348,共5页
为提高逆向工程中点云、三角网格等数据的索引效率,提出一种R*-树结点自适应聚类分簇算法,采用均匀分布数据作为参考点集,基于间隙统计法及k-均值算法获得使结点相似度之和开始收敛的自然簇数,进而实现R*-树的结点自适应聚类分簇.实验证... 为提高逆向工程中点云、三角网格等数据的索引效率,提出一种R*-树结点自适应聚类分簇算法,采用均匀分布数据作为参考点集,基于间隙统计法及k-均值算法获得使结点相似度之和开始收敛的自然簇数,进而实现R*-树的结点自适应聚类分簇.实验证明,该算法可实现各类复杂几何对象的R*-树结点分簇问题,并能降低R*-树结点分簇的参数依赖性,减少结点重合度,提高R*-树空间数据查询效率. 展开更多
关键词 R*- 自适应 结点分簇 结点相似度 隙统计法 k-均值
在线阅读 下载PDF
一种基于数据场的K-均值算法 被引量:11
3
作者 简艳 贾洪勇 《计算机应用研究》 CSCD 北大核心 2010年第12期4498-4501,共4页
针对K-均值算法在随机选取初始类中心时存在不足、对噪声和孤立点敏感、不适用于发现大小差别很大的类的问题,借鉴分子间的相互作用力模型,将文本模拟成数据场中的数据点,综合考虑文本间的相似度和相异度,提出一个新的数据势值计算公式... 针对K-均值算法在随机选取初始类中心时存在不足、对噪声和孤立点敏感、不适用于发现大小差别很大的类的问题,借鉴分子间的相互作用力模型,将文本模拟成数据场中的数据点,综合考虑文本间的相似度和相异度,提出一个新的数据势值计算公式。根据文本数据的势,剔除孤立点、确定初始类中心。实验结果证明,该算法可以提高收敛速度,消除噪声和孤立点对聚类结果的影响,提高聚类的精度,适用于主题分布不均匀的文本集。 展开更多
关键词 k-均值 分子相互作用力 数据场 文本
在线阅读 下载PDF
基于信息理论的网络文本组合聚类
4
作者 王扬 袁昆 +2 位作者 刘洪甫 吴俊杰 包秀国 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2016年第8期1603-1611,共9页
尽管近年来针对文本聚类问题进行了大量研究,其仍然是数据挖掘领域的一个富有挑战性的问题,特别在弱相关特征乃至噪声特征的处理上,仍然存在诸多挑战。针对这一问题提出了文本聚类的分解-组合算法框架——DIAS。该方法首先通过简单随机... 尽管近年来针对文本聚类问题进行了大量研究,其仍然是数据挖掘领域的一个富有挑战性的问题,特别在弱相关特征乃至噪声特征的处理上,仍然存在诸多挑战。针对这一问题提出了文本聚类的分解-组合算法框架——DIAS。该方法首先通过简单随机特征抽样将高维文本数据进行分解得到多样化的结构知识,其优点是能够较好地避免产生大量的噪声特征。然后采用基于信息理论的一致性聚类(ICC)将多视角基础聚类知识组合起来,得到高质量的一致性划分。最后通过在8个真实文本数据集上的实验,证明DIAS算法相较于其他被广泛使用的算法具有明显优势,特别在处理弱基础聚类上具有突出效果。由于在分布式计算上的天然优势,DIAS有望成为大规模文本聚类的主流算法。 展开更多
关键词 文本 分解-组合算法 基于信息理论的一致性 k-均值 大数据
在线阅读 下载PDF
基于局部形状结构分类的心血管内超声图像中-外膜边界检测 被引量:3
5
作者 袁绍锋 杨丰 +2 位作者 刘树杰 季飞 黄靖 《电子学报》 EI CAS CSCD 北大核心 2018年第7期1601-1608,共8页
本文提出了一种基于局部形状结构分类的心血管内超声(Intravascular Ultrasound,IVUS)图像中-外膜边界检测方法.首先利用k-均值(k-means)聚类方法,确定局部形状结构类别;其次通过类别标号索引图像块,并对其进行积分通道特征和自相似性... 本文提出了一种基于局部形状结构分类的心血管内超声(Intravascular Ultrasound,IVUS)图像中-外膜边界检测方法.首先利用k-均值(k-means)聚类方法,确定局部形状结构类别;其次通过类别标号索引图像块,并对其进行积分通道特征和自相似性特征提取,构建多分类随机决策森林模型;最后由分类模型寻找IVUS图像的关键点,采用曲线拟合方法,实现IVUS图像中-外膜边界检测.实验结果表明,本文方法能够有效地解决IVUS图像中斑块、伪影和血管分支等造成边缘难以准确检测的问题,与已有算法相比,其JM(Jaccard Measure,JM)达到了88.9%,PAD(Percentage of Area Difference,PAD)降低了19.1%,HD(Hausdorff Distance,HD)减少了9.7%,更准确地识别目标边界的关键点,成功地检测出完整的中-外膜边界. 展开更多
关键词 医学图像分析 机器学习 随机决策森林 k-均值 局部形状结构 心血管内超声 -外膜边界检测
在线阅读 下载PDF
不平衡数据集异常检测和分类算法 被引量:3
6
作者 樊芮 陈湘媛 +1 位作者 王冠男 崔艳辉 《电力系统及其自动化学报》 CSCD 北大核心 2023年第9期112-119,共8页
针对传统异常检测模型在面对不平衡样本集时存在参数优化困难、少数类识别效果差等问题,提出一种组合模型以实现不平衡数据集的异常检测和分类。首先利用支撑向量数据描述构造闭合曲面实现“异常”检测,然后提出改进少数样本合成技术对... 针对传统异常检测模型在面对不平衡样本集时存在参数优化困难、少数类识别效果差等问题,提出一种组合模型以实现不平衡数据集的异常检测和分类。首先利用支撑向量数据描述构造闭合曲面实现“异常”检测,然后提出改进少数样本合成技术对“异常”数据进行过采样以构建平衡数据集,最后利用所提最大类间-类内距K-均值聚类进行自动聚类,实现3种异常数据的分类判决。结果表明,所提方法能够获得较高的异常检测和分类性能,并且具有较强的泛化能力。 展开更多
关键词 异常检测及分 不平衡数据 最大类间-类内距k-均值聚类 少数样本合成技术 过采样
在线阅读 下载PDF
基于NSCT、KFCM和多模型LS-SVM的红外小目标检测 被引量:7
7
作者 吴一全 尹丹艳 吴诗婳 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第8期1704-1709,共6页
为了进一步提高红外小目标的检测性能,针对图像序列中背景与小目标的特点,提出了一种基于非下采样Contourlet变换(nonsubsampled contourlet transform,NSCT)和核模糊C均值(kernel fuzzy C means,KFCM)聚类多模型最小二乘支持向量机(lea... 为了进一步提高红外小目标的检测性能,针对图像序列中背景与小目标的特点,提出了一种基于非下采样Contourlet变换(nonsubsampled contourlet transform,NSCT)和核模糊C均值(kernel fuzzy C means,KFCM)聚类多模型最小二乘支持向量机(least squares support vector machine,LS-SVM)背景预测的检测方法。首先对红外小目标图像进行NSCT并去噪,提高图像的信噪比;然后通过基于核模糊C均值聚类的多模型LS-SVM预测去噪后红外图像中的背景,用去噪后的实际图像减去背景预测图像得到残差图像;接着提出基于递归最大类间绝对差的阈值选取算法分割残差图像;最后利用目标灰度的平稳性和运动轨迹的连续性进一步检测出真实的小目标。给出了实验结果与分析,并与现有的3种基于背景预测的小目标检测方法进行了比较。结果表明该方法具有更高的检测概率和信噪比增益。 展开更多
关键词 红外小目标检测 非下采样CONTOURLET变换 核模糊C均值 最小二乘支持向量机 递归最大类绝对差
在线阅读 下载PDF
基于轻量胶囊网络的自监督图像变化检测方法
8
作者 张益天 罗喜伶 王宇鹏 《北京航空航天大学学报》 北大核心 2025年第5期1705-1715,共11页
针对散斑噪声对合成孔径雷达(SAR)图像变化检测精度影响大、现有基于胶囊网络的图像变化检测方法网络模型复杂度高、训练样本丢失大量原始图像信息等问题,提出了一种基于轻量胶囊网络的自监督图像变化检测方法。生成对数比值算子差异图... 针对散斑噪声对合成孔径雷达(SAR)图像变化检测精度影响大、现有基于胶囊网络的图像变化检测方法网络模型复杂度高、训练样本丢失大量原始图像信息等问题,提出了一种基于轻量胶囊网络的自监督图像变化检测方法。生成对数比值算子差异图,通过最大类间方差法和模糊C均值聚类算法,获得高置信度的训练样本“伪标签”,为实现自监督学习奠定基础;构造基于两时相SAR图像和对数比值算子差异图的三通道训练样本,最大限度保留样本信息;设计轻量胶囊网络,通过单尺度卷积提取训练样本特征,采用单尺度胶囊网络挖掘特征之间的空间关系;设置对比实验和消融实验,在5个真实SAR数据集上进行测试。实验结果表明:所提方法在降低模型复杂度的条件下,提高了运行效率,获得了更强的鲁棒性特征,抑制了散斑噪声对变化检测效果的不利影响,提升了变化检测效果。 展开更多
关键词 变化检测 胶囊网络 最大类方差法 模糊C均值 自监督学习
在线阅读 下载PDF
运动背景中结合特征位移矢量场模糊分割与OTSU法的运动检测 被引量:6
9
作者 喻夏琼 陈向宁 姜明勇 《光电工程》 CAS CSCD 北大核心 2012年第1期94-102,共9页
运动背景中的运动检测难度较大,背景运动补偿后差分以及分割光流场可实现动目标和背景的分离,差分前需进行鲁棒的背景估计,且差分后易出现空洞,而光流估计在噪声以及目标运动速度较大时并不准确,尤其在光照变化时,两种方法均易失效。本... 运动背景中的运动检测难度较大,背景运动补偿后差分以及分割光流场可实现动目标和背景的分离,差分前需进行鲁棒的背景估计,且差分后易出现空洞,而光流估计在噪声以及目标运动速度较大时并不准确,尤其在光照变化时,两种方法均易失效。本文提出一种特征点位移矢量场模糊分割与图像自适应阈值化相结合的运动检测方法,实现在无任何关于运动目标或者运动背景先验信息条件下的动目标检测。通过改进的SIFT匹配方法生成鲁棒的特征位移矢量场,采用模糊C均值聚类算法对SIFT位移矢量场进行无监督分类,实现动目标与背景特征的自适应分离。OTSU法和形态学操作实现图像的自适应分割,用以修正特征点凸包,最终分割出动目标区域。与鲁棒的背景运动补偿后差分以及光流估计的对比实验表明,在目标运动速度较大、光照变化以及噪声情况下,本文方法均能够检测出运动目标,且在光照变化下的优势明显。 展开更多
关键词 运动检测 运动背景 SIFT 模糊C均值 最大类方差法
在线阅读 下载PDF
基于归一化水体指数及其阈值自适应算法的水体遥感反演效果分析 被引量:10
10
作者 刘宏洁 宋文龙 +4 位作者 刘昌军 卢奕竹 曲伟 唐锐 桂荣洁 《中国水利水电科学研究院学报(中英文)》 北大核心 2022年第3期251-261,共11页
归一化水体指数(NDWI)是水体遥感反演的一种重要指标,其阈值及修正直接影响反演结果的精度。基于Landsat-8与GF-1光学多光谱影像,使用归一化水体指数法阈值0(TH0)、最大类间方差法(OTSU)自适应阈值(THotsu)与均值漂移聚类算法(Mean-Shi... 归一化水体指数(NDWI)是水体遥感反演的一种重要指标,其阈值及修正直接影响反演结果的精度。基于Landsat-8与GF-1光学多光谱影像,使用归一化水体指数法阈值0(TH0)、最大类间方差法(OTSU)自适应阈值(THotsu)与均值漂移聚类算法(Mean-Shift)自适应阈值(THMS)分别对典型正常水体、云雾覆盖水体、富营养化水体、高含泥沙水体进行水体遥感提取与效果分析,结果表明:正常水体以TH0为阈值提取精度最高,THMS提取精度次之,THotsu提取精度最差;而云雾覆盖水体、富营养化水体以及含泥沙水体使用THMS提取精度最高,尤其少量云雾覆盖下的水体,THMS具有更明显的优势,TH0提取精度次之,THotsu提取精度最差;对于不同的阈值,Land⁃sat-8比GF-1总体表现出更高的水体提取精度。Mean-Shift算法应用于NDWI阈值修正与水体遥感反演具有快速、水质适应性强、效果稳定的优势,对尤其是复杂条件下的水体信息遥感反演具有较好的提取效果。 展开更多
关键词 水体遥感反演 归一化水体指数 均值漂移算法 最大类方差算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部