期刊文献+
共找到129篇文章
< 1 2 7 >
每页显示 20 50 100
一种新的最大相关最小冗余特征选择算法 被引量:9
1
作者 李顺勇 王改变 《智能系统学报》 CSCD 北大核心 2021年第4期649-661,共13页
传统的基于特征选择的分类算法中,由于其采用的冗余度和相关度评价标准单一,从而使得此类算法应用范围受限。针对这个问题,本文提出一种新的最大相关最小冗余特征选择算法,该算法在度量特征之间冗余度的评价准则中引入了两种不同的评价... 传统的基于特征选择的分类算法中,由于其采用的冗余度和相关度评价标准单一,从而使得此类算法应用范围受限。针对这个问题,本文提出一种新的最大相关最小冗余特征选择算法,该算法在度量特征之间冗余度的评价准则中引入了两种不同的评价准则;在度量特征与类别之间的相关度中引入了4种不同的评价准则,衍生出8种不同的特征选择算法,从而使得该算法应用范围增大。此外,由于传统的最大相关最小冗余特征选择算法不能根据用户实际需求的数据维度进行特征选择。所以,引入了指示向量λ来刻画用户实际的数据维度需求,提出了一种新的目标函数来求解最优特征子集,利用支持向量机对4个UCI数据集的特征子集进行了实验,最后,利用分类正确率、成对单边T检验充分验证了该算法的有效性。 展开更多
关键词 特征选择 冗余 相关 降维 分类 分类正确率 支持向量机 T检验
在线阅读 下载PDF
利用近似马尔科夫毯的最大相关最小冗余特征选择算法 被引量:14
2
作者 张俐 王枞 郭文明 《西安交通大学学报》 EI CAS CSCD 北大核心 2018年第10期141-145,共5页
针对高维数据集中冗余特征或无关特征降低机器学习模型分类准确率的问题,提出了一种基于近似马尔科夫毯的特征选择(nmRMR)算法。该算法首先利用最大相关最小冗余的准则进行特征相关性排序;采用近似马尔科夫毯算法对冗余特征或者无关特... 针对高维数据集中冗余特征或无关特征降低机器学习模型分类准确率的问题,提出了一种基于近似马尔科夫毯的特征选择(nmRMR)算法。该算法首先利用最大相关最小冗余的准则进行特征相关性排序;采用近似马尔科夫毯算法对冗余特征或者无关特征进行删除,并最大程度地提高特征之间的相关性从而获得最优特征子集。在UCI的8个公开数据集上对比的实验结果表明:与mRMR算法相比,本文算法所选择出的特征子集数平均减少了6.875个,平均分类准确率提高了0.78%;与FullSet算法相比,本文算法所选择出的特征子集数平均减少了20.56个,平均分类准确率提高了1.88%;与FCBF算法相比,本文算法所选择出的特征子集数平均减少了3.187 5个,平均分类准确率提高了0.825%;本文算法总体优于其他算法。 展开更多
关键词 特征选择 特征相关 冗余特征 近似马尔科夫毯
在线阅读 下载PDF
基于最大相关最小冗余联合互信息的多标签特征选择算法 被引量:43
3
作者 张俐 王枞 《通信学报》 EI CSCD 北大核心 2018年第5期111-122,共12页
在过去的几十年中,特征选择已经在机器学习和人工智能领域发挥着重要作用。许多特征选择算法都存在着选择一些冗余和不相关特征的现象,这是因为它们过分夸大某些特征重要性。同时,过多的特征会减慢机器学习的速度,并导致分类过渡拟合。... 在过去的几十年中,特征选择已经在机器学习和人工智能领域发挥着重要作用。许多特征选择算法都存在着选择一些冗余和不相关特征的现象,这是因为它们过分夸大某些特征重要性。同时,过多的特征会减慢机器学习的速度,并导致分类过渡拟合。因此,提出新的基于前向搜索的非线性特征选择算法,该算法使用互信息和交互信息的理论,寻找与多分类标签相关的最优子集,并降低计算复杂度。在UCI中9个数据集和4个不同的分类器对比实验中表明,该算法均优于原始特征集和其他特征选择算法选择出的特征集。 展开更多
关键词 特征选择 条件互信息 特征交互 特征相关 特征冗余
在线阅读 下载PDF
基于改进最大相关最小冗余判据的暂态稳定评估特征选择 被引量:58
4
作者 李扬 顾雪平 《中国电机工程学报》 EI CSCD 北大核心 2013年第34期179-186,27,共8页
提出一种基于改进最大相关最小冗余判据(maximal relevance and minimal redundancy,mRMR)的暂态稳定评估特征选择方法。首先对标准mRMR方法进行改进,在最大相关、最小冗余判据中引入一个权重因子以细化对特征相关性和冗余性的度量。然... 提出一种基于改进最大相关最小冗余判据(maximal relevance and minimal redundancy,mRMR)的暂态稳定评估特征选择方法。首先对标准mRMR方法进行改进,在最大相关、最小冗余判据中引入一个权重因子以细化对特征相关性和冗余性的度量。然后,考虑相量测量单元可以提供的故障后实测信息,构造由系统特征构成的原始特征集,将改进的mRMR应用于特征选择。通过增量搜索算法得到一组嵌套的候选特征子集,并使用支持向量机分类器验证各候选特征子集的分类性能,选择得到具有最大分类正确率的特征子集。基于新英格兰39节点系统和IEEE 50机测试系统的算例结果验证了所提特征选择方法的有效性。 展开更多
关键词 暂态稳定评估 特征选择 最大相关最小冗余 支持向量机 相量测量单元
在线阅读 下载PDF
改进的最大相关最小冗余特征选择方法研究 被引量:10
5
作者 姚明海 王娜 +1 位作者 齐妙 李妍 《计算机工程与应用》 CSCD 2014年第9期116-122,共7页
特征选择方法作为重要的数据预处理工作一直受到各个领域的关注。在分析现有的特征选择方法的基础上,针对MRMR方法中存在的冗余度和相关性评价方法单一,不能根据用户需求设置特征维度等问题进行了改进。在冗余度计算过程提出一种新的简... 特征选择方法作为重要的数据预处理工作一直受到各个领域的关注。在分析现有的特征选择方法的基础上,针对MRMR方法中存在的冗余度和相关性评价方法单一,不能根据用户需求设置特征维度等问题进行了改进。在冗余度计算过程提出一种新的简单快速的计算方法;在计算权重过程中提出针对不同数据选用不同的特征评价方法;引入新的目标评价函数来进行特征选择。在五个经典的用于生物认证领域的特征数据库(FERET、CASIA、ORL、PIE和扩展的YaleB)上验证了算法的有效性,实验结果充分证明了改进的最大相关最小冗余算法的优势。 展开更多
关键词 特征选择 最大相关最小冗余(MRMR) 生物认证 评价函数 经典数据库
在线阅读 下载PDF
最大相关和最大差异的高维数据特征选择算法 被引量:3
6
作者 孟圣洁 于万钧 陈颖 《计算机应用》 CSCD 北大核心 2024年第3期767-771,共5页
针对高维数据存在冗余信息且维度过高的问题,提出基于信息量的最大相关最大差异特征选择算法(MCD)。首先,利用互信息(MI)度量特征和标签之间的相关性,对特征进行排序,选择互信息最大的特征加入特征子集;然后,引入信息距离度量特征之间... 针对高维数据存在冗余信息且维度过高的问题,提出基于信息量的最大相关最大差异特征选择算法(MCD)。首先,利用互信息(MI)度量特征和标签之间的相关性,对特征进行排序,选择互信息最大的特征加入特征子集;然后,引入信息距离度量特征之间的信息冗余性及差异性,设计评价准则对每个特征进行评价,使特征子集中特征和标签的相关性、特征之间的差异性最大;最后,用前向搜索策略结合评价准则进行属性约简,最优化特征子集。采用2种不同的分类器,在6个数据集上和mRMR(minimal-Redundancy-Maximal-Relevance criterion)、RReliefF等5个经典算法进行对比实验,利用分类精度验证MCD的有效性。在支持向量机(SVM)分类器下,平均分类精度提高了5.67~23.80个百分点;在K-近邻(KNN)分类器下,平均分类精度提高了2.69~25.18个百分点。可见,MCD在绝大多数情况下,能有效去除冗余特征,分类精度有明显提高。 展开更多
关键词 特征选择 高维数据 特征冗余 相关 分类准确率 降维
在线阅读 下载PDF
基于ReliefF和最大相关最小冗余的多标记特征选择 被引量:10
7
作者 孙林 徐枫 +1 位作者 李硕 王振 《河南师范大学学报(自然科学版)》 CAS 北大核心 2023年第6期21-29,F0002,共10页
针对现有的特征选择模型未涉及特征和标记集之间的相关度,造成分类精度偏低等情况,提出了基于ReliefF和最大相关最小冗余(maximum Relevance and Minimum Redundancy,mRMR)的多标记特征选择.首先,运用互信息计算每个标记和标记集之间的... 针对现有的特征选择模型未涉及特征和标记集之间的相关度,造成分类精度偏低等情况,提出了基于ReliefF和最大相关最小冗余(maximum Relevance and Minimum Redundancy,mRMR)的多标记特征选择.首先,运用互信息计算每个标记和标记集之间的相关度,使用每项相关度占其相关度之和的比例设计了标记权重,由此构建了特征和标记集间的相关度,初选与标记集相关度高的特征;其次,计算对象在特征上的距离,构建了新的特征权值更新公式,基于标记权重改进多标记ReliefF模型.然后,基于互信息和标记权重构建了最大相关性,设计了最小冗余性及其新的最大相关最小冗余评价准则,并将其应用于多标记特征选择,进一步剔除冗余特征;最后,设计了一种基于ReliefF和最大相关最小冗余的多标记特征选择算法,有效提高了多标记分类性能.在8个多标记数据集上测试所提算法的平均分类精度、覆盖率、汉明损失、1错误率和排序损失,实验结果证明了该算法的有效性. 展开更多
关键词 多标记学习 特征选择 标记权重 RELIEFF 最大相关最小冗余
在线阅读 下载PDF
面向高维不平衡数据的特征选择算法 被引量:2
8
作者 王振飞 袁佩瑶 +1 位作者 曹中亚 张利莹 《小型微型计算机系统》 CSCD 北大核心 2024年第8期1839-1846,共8页
针对传统高维不平衡数据集的分类算法存在偏向多数类、忽视少数类等问题,本文提出一种基于密度聚类和重要性度量的特征选择算法(DBIM).首先通过随机降采样的方法构造出多个平衡子集,使用DBSCAN密度聚类方法作为基分类器生成初始特征子空... 针对传统高维不平衡数据集的分类算法存在偏向多数类、忽视少数类等问题,本文提出一种基于密度聚类和重要性度量的特征选择算法(DBIM).首先通过随机降采样的方法构造出多个平衡子集,使用DBSCAN密度聚类方法作为基分类器生成初始特征子空间.然后按照重要度对特征进行排序选择出较强分类的特征.最后,为了避免特征之间的冗余性,设计基于类分布的权重指标与冗余性评价指标相结合的方法进行计算,生成高质量的特征子集.在8个公开数据集上的实验结果表明,本文提出DBIM算法可以生成高相关度且低冗余度的特征子集,对高维不平衡数据集进行有效降维,提高分类性能. 展开更多
关键词 高维不平衡数据集 密度聚类 特征选择 相关 冗余
在线阅读 下载PDF
基于特征选择与Transformer-LSTM的滚动轴承寿命预测 被引量:2
9
作者 李沁远 雷文平 +2 位作者 闫灏 娄永威 陈阳 《组合机床与自动化加工技术》 北大核心 2025年第2期200-206,211,共8页
滚动轴承作为旋转机械设备中的关键部件,影响着设备的可靠性运行。针对以往剩余使用寿命(RUL)预测方法对轴承退化信息挖掘不充分、忽视不同特征贡献度和不同特征组合对预测模型精度的影响,提出一种基于特征选择与Transformer-LSTM的剩... 滚动轴承作为旋转机械设备中的关键部件,影响着设备的可靠性运行。针对以往剩余使用寿命(RUL)预测方法对轴承退化信息挖掘不充分、忽视不同特征贡献度和不同特征组合对预测模型精度的影响,提出一种基于特征选择与Transformer-LSTM的剩余使用寿命预测模型。首先基于单调性、趋势性以及最大相关最小冗余特征选择算法对振动信号的时域、频域、时频域特征进行重要性排序和筛选,从而捕获特征与剩余寿命以及特征之间的相互的关系。然后将筛选后的特征输入Transformer-LSTM预测模型中,深度挖掘输入特征与RUL之间的复杂映射关系,从而更准确地进行预测。通过公开的轴承数据集进行实验验证,与其他RUL预测方法相比,所提方法的预测性能更优越。 展开更多
关键词 剩余使用寿命 特征选择 最大相关最小冗余 Transformer-LSTM模型
在线阅读 下载PDF
面向抗倒塌地震动强度指标选取的特征选择算法性能评估
10
作者 胡进军 刘亦恒 刘巴黎 《地震工程与工程振动》 CSCD 北大核心 2024年第6期1-11,共11页
为了筛选有效预测结构倒塌能力的地震动强度指标,对比分析了MIC、ReliefF、XGBoost和Lasso这4种常见特征选择算法用于地震动强度指标筛选时的性能。基于单自由度结构增量动力分析结果及地震动强度指标建立特征选择回归模型,根据回归模... 为了筛选有效预测结构倒塌能力的地震动强度指标,对比分析了MIC、ReliefF、XGBoost和Lasso这4种常见特征选择算法用于地震动强度指标筛选时的性能。基于单自由度结构增量动力分析结果及地震动强度指标建立特征选择回归模型,根据回归模型输出权重及频数得到欧氏距离大小排序并筛选地震动强度指标,利用筛选结果对特征选择算法的性能进行评估。同时基于2层、4层、8层和12层钢筋混凝土框架结构的增量动力分析结果对筛选后强度指标建立最小二乘回归模型,以残差的标准差变化衡量不同特征选择算法筛选出的地震动强度指标对结构倒塌的预测能力。结果表明:基于Lasso回归算法筛选的地震动强度指标比其他算法用于结构倒塌预测时准确率提高31%。结果可为基于性能地震工程(performance-based earthquake engineering,PBEE)框架下结构易损性分析中及地震动不确定性分析中地震动强度指标筛选的特征选择算法提供参考,也可为结构倒塌预测的地震动强度指标筛选提供有效特征选择算法参考。 展开更多
关键词 地震动强度指标 特征选择算法 结构倒塌分析 增量动力分析 最小二乘回归
在线阅读 下载PDF
基于相关性和冗余度的联合特征选择方法 被引量:15
11
作者 周城 葛斌 +1 位作者 唐九阳 肖卫东 《计算机科学》 CSCD 北大核心 2012年第4期181-184,共4页
比较研究了与类别信息无关的文档频率和与类别信息有关的信息增益、互信息和χ2统计特征选择方法,在此基础上分析了以往直接组合这两类特征选择方法的弊端,并提出基于相关性和冗余度的联合特征选择算法。该算法将文档频率方法分别与信... 比较研究了与类别信息无关的文档频率和与类别信息有关的信息增益、互信息和χ2统计特征选择方法,在此基础上分析了以往直接组合这两类特征选择方法的弊端,并提出基于相关性和冗余度的联合特征选择算法。该算法将文档频率方法分别与信息增益、互信息和χ2统计方法联合进行特征选择,旨在删除冗余特征,并保留有利于分类的特征,从而提高文本情感分类效果。实验结果表明,该联合特征选择方法具有较好的性能,并且能够有效降低特征维数。 展开更多
关键词 文本情感分类 联合特征选择 相关 冗余特征
在线阅读 下载PDF
基于相关性分析及遗传算法的高维数据特征选择 被引量:17
12
作者 任江涛 黄焕宇 +1 位作者 孙婧昊 印鉴 《计算机应用》 CSCD 北大核心 2006年第6期1403-1405,共3页
特征选择是模式识别及数据挖掘等领域的重要问题之一。针对高维数据对象,特征选择一方面可以提高分类精度和效率,另一方面可以找出富含信息的特征子集。针对此问题,提出了一种综合了filter模型及wrapper模型的特征选择方法,首先基于特... 特征选择是模式识别及数据挖掘等领域的重要问题之一。针对高维数据对象,特征选择一方面可以提高分类精度和效率,另一方面可以找出富含信息的特征子集。针对此问题,提出了一种综合了filter模型及wrapper模型的特征选择方法,首先基于特征与类别标签的相关性分析进行特征筛选,只保留与类别标签具有较强相关性的特征,然后针对经过筛选而精简的特征子集采用遗传算法进行随机搜索,并采用感知器模型的分类错误率作为评价指标。实验结果表明,该算法可有效地找出具有较好的线性可分离性的特征子集,从而实现降维并提高分类精度。 展开更多
关键词 特征选择 相关 遗传算法
在线阅读 下载PDF
基于特征相关性和冗余性分析的机械故障特征选择研究 被引量:8
13
作者 王新峰 邱静 刘冠军 《中国机械工程》 EI CAS CSCD 北大核心 2006年第4期379-382,共4页
从特征相关性和冗余性的定义出发,利用特征与类别间的互信息对特征相关性和冗余性进行了度量,提出了一种基于特征相关性和冗余性分析的特征选择方法。数值仿真和柴油机故障特征选择实验结果表明,新方法可以快速、有效地求得优化特征集,... 从特征相关性和冗余性的定义出发,利用特征与类别间的互信息对特征相关性和冗余性进行了度量,提出了一种基于特征相关性和冗余性分析的特征选择方法。数值仿真和柴油机故障特征选择实验结果表明,新方法可以快速、有效地求得优化特征集,是求解特征选择问题的一个较好方案。 展开更多
关键词 特征选择 相关 冗余 故障诊断
在线阅读 下载PDF
基于特征相关的偏最小二乘特征选择方法 被引量:5
14
作者 曾青霞 杜建强 +3 位作者 朱志鹏 聂斌 余日跃 喻芳 《计算机应用研究》 CSCD 北大核心 2019年第4期1036-1038,1054,共4页
针对传统的偏最小二乘法只考虑单特征的重要性以及特征之间存在冗余和多重共线性等问题,将特征之间的统计相关性引入到传统的偏最小二乘分析中,构造了一种基于特征相关的偏最小二乘模型。首先利用特征相关度对特征进行评估预选出特征组... 针对传统的偏最小二乘法只考虑单特征的重要性以及特征之间存在冗余和多重共线性等问题,将特征之间的统计相关性引入到传统的偏最小二乘分析中,构造了一种基于特征相关的偏最小二乘模型。首先利用特征相关度对特征进行评估预选出特征组;然后将其放入偏最小二乘模型中进行训练,评估该特征组是否可取。结合前向贪心搜索策略依次评价候选特征,并选中使目标函数最小的候选特征加入到已选特征。分别采用麻杏石甘汤君药止咳、平喘和UCI数据集进行分析处理。实验结果表明,该特征选择方法能较好地寻找较优的特征组。 展开更多
关键词 中医药信息 最小二乘法 特征相关 特征选择
在线阅读 下载PDF
基于mRMR算法的脑电特征评价
15
作者 孙哲 李慧 +2 位作者 邵荃 张军峰 贾萌 《南京航空航天大学学报(自然科学版)》 北大核心 2025年第3期580-588,共9页
由于具有高时间分辨率、无创性,脑电(Electroencephalogram,EEG)信号被广泛应用于航空航天任务操作员的疲劳、脑力负荷分析等。针对EEG信号多通道且各通道内信息不完全相同的特性,提出了一种基于最小冗余最大相关性(Minimum redundancy ... 由于具有高时间分辨率、无创性,脑电(Electroencephalogram,EEG)信号被广泛应用于航空航天任务操作员的疲劳、脑力负荷分析等。针对EEG信号多通道且各通道内信息不完全相同的特性,提出了一种基于最小冗余最大相关性(Minimum redundancy maximum relevance,mRMR)算法的EEG特征评价技术。通过设置目标变量,计算各通道内EEG特征与目标变量的互信息量、特征在通道内部的冗余度,可对EEG特征的性能做出评价。进一步,获取管制员在不同脑力负荷下的EEG数据,对一系列EEG特征做出评价并与已有研究、特征在不同分类方式下的可分性进行对比,验证了该特征评价技术的有效性。与现有的技术相比,该技术避免了灰色关联分析法确定权重参数和灰色关联度的主观性、避免了分类器评价法的差异性。相较于已有的特征选择算法,考虑了通道内部信息的冗余,使得评价结果更为准确。相较于基于统计学的相关技术,该方法可对特征的性能做出定量的评价,以便对不同指标进行比较。最后,阐述了该评价方式疲劳程度分析、情绪识别等方面的应用。 展开更多
关键词 脑电特征 最小冗余最大相关 特征评价 管制员
在线阅读 下载PDF
基于偏最小二乘算法的高维谱数据特征选择 被引量:4
16
作者 汤健 贾美英 +2 位作者 刘卓 乔勇 赵立杰 《控制工程》 CSCD 北大核心 2015年第6期1127-1130,共4页
基于高维谱数据全部谱变量建立的软测量模型不但存在模型学习速度慢、泛化性和可解释性差等问题,并且难以揭示软测量模型所蕴含的物理含义和进行合理的物理解释等问题。对高维谱数据进行变量选择,降低输入变量维数一直是特征选择领域的... 基于高维谱数据全部谱变量建立的软测量模型不但存在模型学习速度慢、泛化性和可解释性差等问题,并且难以揭示软测量模型所蕴含的物理含义和进行合理的物理解释等问题。对高维谱数据进行变量选择,降低输入变量维数一直是特征选择领域的热点问题之一。针对这些问题,提出了一种基于偏最小二乘(PLS)算法的高维谱数据特征选择方法。该方法首先分析了基于偏最小二乘算法的潜变量特征提取方法,然后,采用PLS算法分析了原始未标定谱数据的不同谱变量的灵敏度,计算从谱数据提取的不同潜在变量系数的平方和,最后结合球域准则和软测量模型精度基于优化求解的思路进行谱变量选择,进而实现高维谱数据特征的全局优化选择。采用近红外谱数据验证了所提方法的有效性。 展开更多
关键词 特征选择 高维谱数据 球域准则 最小二乘算法
在线阅读 下载PDF
基于特征权重与词间相关性的文本特征选择算法 被引量:3
17
作者 任永功 杨荣杰 尹明飞 《计算机应用与软件》 CSCD 北大核心 2012年第9期33-36,共4页
传统的ReliefF算法使用二值法不能体现离散特征差异大小,且不能去除冗余特征。针对这种情况提出了mRMR-ReliefF特征选择算法。该算法利用概率弥补特征差异度量上的不足,提出新的差异函数。此函数使提取出的特征更能体现文本的类内相关... 传统的ReliefF算法使用二值法不能体现离散特征差异大小,且不能去除冗余特征。针对这种情况提出了mRMR-ReliefF特征选择算法。该算法利用概率弥补特征差异度量上的不足,提出新的差异函数。此函数使提取出的特征更能体现文本的类内相关性和类间差异性。该算法还结合了词间相关性。词间相关性在考虑选择和类别相关性大的特征词的同时还考虑了特征冗余的消除。通过三种算法的对比实验,表明该算法为文本分类提供了更有效的特征子集。 展开更多
关键词 RELIEFF算法 mRMR-ReliefF算法 特征选择 差异函数 词间相关 文本分类
在线阅读 下载PDF
相关性分析和自适应遗传算法的入侵特征选择 被引量:2
18
作者 张睿哲 李战国 杨照峰 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2018年第3期342-346,共5页
为了获得理想的网络入侵检测率,保证网络的正常运行,文章提出了一种相关性分析和自适应遗传算法(correlation analysis and adaptive genetic algorithm,CA-AGA)的网络入侵特征选择方法。首先采用相关性分析对网络入侵原始特征进行降维... 为了获得理想的网络入侵检测率,保证网络的正常运行,文章提出了一种相关性分析和自适应遗传算法(correlation analysis and adaptive genetic algorithm,CA-AGA)的网络入侵特征选择方法。首先采用相关性分析对网络入侵原始特征进行降维,删除其中的冗余特征,然后采用自适应遗传算法找到最优特征子集,最后采用支持向量机(support vector machine,SVM)作为分类器,并采用KDD 1999数据进行验证性实验。结果表明,文章提出的方法可快速选择入侵检测的最优特征子集,能够提高网络入侵检测率和速度。 展开更多
关键词 相关性分析(CA) 自适应遗传算法(AGA) 网络入侵 特征选择
在线阅读 下载PDF
基于改进哈里斯鹰优化算法的光谱特征波段选择模型研究 被引量:5
19
作者 鲍浩 张艳 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第1期148-157,共10页
特征波段选择是近红外光谱分析的关键步骤之一,有效的特征波段选择能提高建模效率与模型性能。传统的特征波段选择算法存在运行时间长、选择特征冗余的缺陷,在实际工程应用中难以达到期望的效果。哈里斯鹰优化(HHO)算法具有原理简单、... 特征波段选择是近红外光谱分析的关键步骤之一,有效的特征波段选择能提高建模效率与模型性能。传统的特征波段选择算法存在运行时间长、选择特征冗余的缺陷,在实际工程应用中难以达到期望的效果。哈里斯鹰优化(HHO)算法具有原理简单、参数少的优点,但同时也存在收敛精度低且易陷入局部最优的不足。在HHO算法的基础上提出了一种基于改进哈里斯鹰优化(IHHO)算法的近红外光谱特征波段选择模型。针对HHO算法只能用于求解连续空间的优化问题,采用离散化策略对HHO算法进行修正,使其能求解离散形式的特征波段选择问题;考虑到HHO算法初始种群的质量差,使用混沌映射、反向学习提高初始种群的质量,以增强算法的全局探索能力;由于HHO算法在局部搜索时的收敛精度低,提出了新的猎物能量衰减模型与跳跃策略,以进一步增强算法在局部搜索时的寻优能力;为避免算法在寻优过程中落入局部最优,借鉴了遗传算法的变异方式对HHO算法进行扰动。使用竞争性自适应重加权采样法(CARS)、连续投影算法(SPA)、粒子群优化(PSO)算法、遗传算法(GA)、 HHO算法与IHHO算法进行比较,并以4个定性分析近红外光谱数据集与2个定量分析近红外光谱数据集分别建立了支持向量机(SVM)识别模型和偏最小二乘回归(PLSR)模型。在定性分析实验中,IHHO算法得到的平均准确率相对于全波段时分别提高了0.83%、 9.55%、 17.65%以及0%,平均特征波段数仅占全波段的9.97%、 2.59%、 1.36%以及0.59%。在定量分析实验中,IHHO算法得到的平均决定系数分别较全波段提高了10.57%、 1.47%、 4.41%、 3.66%以及3.06%,平均均方根误差分别较全波段较低了0.162、 1.266 3、 1.868、 1.869 4以及0.408 4,平均特征波段数仅占全波段的9.24%、 10.53%、 6.54%、 6.91%以及7.14%。实验结果表明,IHHO算法在选择特征波段时能够去冗余,针对性选择最重要的特征波段,其性能均优于比较的几种算法。IHHO算法具有良好的应用前景。 展开更多
关键词 近红外光谱分析 特征波段选择 哈里斯鹰优化算法 支持向量机 最小二乘回归
在线阅读 下载PDF
基于改进最大相关最小冗余的选择性集成分类器 被引量:2
20
作者 吴倩楠 颜学峰 《高技术通讯》 CAS 2022年第1期40-49,共10页
在构建选择性集成分类器时,寻找分类准确率高且差异性大的最优分类器子集至关重要。为平衡集成子集中基分类器的准确性和多样性,提出了一种基于改进最大相关最小冗余的选择性集成分类器(ImRMRSEC)。首先,将基分类器对验证集的预测结果... 在构建选择性集成分类器时,寻找分类准确率高且差异性大的最优分类器子集至关重要。为平衡集成子集中基分类器的准确性和多样性,提出了一种基于改进最大相关最小冗余的选择性集成分类器(ImRMRSEC)。首先,将基分类器对验证集的预测结果视为一个个“特征”,把特征选择的思想扩展到集成分类器的约简问题中,基于最大相关最小冗余准则寻找基分类器子集。其次,引入Gram-Schmidt正交化求取“特征”的等价向量,替代原向量输入最大相关最小冗余算法中,并基于距离相关系数(DCC)衡量相关性。同时,利用序列浮动前向选择方法搜索最优子集。实验结果充分展示了所构建分类器卓越的设计性能。 展开更多
关键词 选择性集成 最大相关最小冗余(mRMR) 特征选择 正交化 距离相关系数(DCC)
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部