期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于最大熵模糊聚类简化的联合概率数据关联算法
1
作者 韩继辉 高龙 +2 位作者 黄子奇 黄道颖 张安琳 《火力与指挥控制》 CSCD 北大核心 2024年第12期62-67,76,共7页
针对杂波环境下联合概率数据关联算法(joint probabilistic data association,JPDA)计算复杂度较高、实时性较差等问题,提出一种基于最大熵模糊聚类的JPDA算法。基于目标轨迹和量测之间的关联规则,采用最大熵模糊聚类算法实现量测与目... 针对杂波环境下联合概率数据关联算法(joint probabilistic data association,JPDA)计算复杂度较高、实时性较差等问题,提出一种基于最大熵模糊聚类的JPDA算法。基于目标轨迹和量测之间的关联规则,采用最大熵模糊聚类算法实现量测与目标的初步数据关联,分析了公共量测对目标跟踪的影响,并引入了公共量测影响系数来修正关联概率,最后使用卡尔曼滤波算法对目标的状态估计进行预测,从而更新各个目标的状态。仿真结果表明,所提算法有效解决了在密集杂波环境中JPDA算法组合爆炸问题,极大缩短计算时间,提高了算法的实时性。 展开更多
关键词 多目标跟踪 联合概率数据关联算法 最大熵模糊
在线阅读 下载PDF
基于最大熵模糊聚类的快速数据关联算法 被引量:15
2
作者 李良群 姬红兵 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2006年第2期251-256,共6页
提出了一种新颖的快速数据关联算法,减少了滤波中关联概率的计算量.该算法利用多个并行改进的最大熵模糊聚类对各个目标的有效观测进行聚类,采用聚类得到的模糊隶属度来重建滤波中的联合关联概率,并在联合关联概率中引入了比例因子避免... 提出了一种新颖的快速数据关联算法,减少了滤波中关联概率的计算量.该算法利用多个并行改进的最大熵模糊聚类对各个目标的有效观测进行聚类,采用聚类得到的模糊隶属度来重建滤波中的联合关联概率,并在联合关联概率中引入了比例因子避免航迹的合并;此外,分析了算法中差异因子的特性,考虑了杂波密度对它的影响,使得能够有效剔除无效观测,进一步减少计算量.仿真实验结果表明,提出的方法是一种有效的快速数据关联算法,跟踪性能要优于现有的数据关联算法. 展开更多
关键词 最大熵模糊 数据关联 联合关联概率
在线阅读 下载PDF
基于Meanshift聚类-Bhattacharya观测似然度修正的联合概率数据关联改进算法 被引量:2
3
作者 田隽 厉丹 肖理庆 《计算机应用》 CSCD 北大核心 2014年第5期1279-1282,共4页
为降低多目标航迹聚集时联合概率数据关联(JPDA)联合关联事件的计算复杂度,提出一种基于Meanshift聚类-Bhattacharya(Bhy)观测似然度修正的JPDA改进算法。利用Meanshift得到聚类中心,据聚类中心与目标预测量测马氏距离形成跟踪门;提出Bh... 为降低多目标航迹聚集时联合概率数据关联(JPDA)联合关联事件的计算复杂度,提出一种基于Meanshift聚类-Bhattacharya(Bhy)观测似然度修正的JPDA改进算法。利用Meanshift得到聚类中心,据聚类中心与目标预测量测马氏距离形成跟踪门;提出Bhy似然度矩阵,将Meanshift聚类中心与各量测Bhy距离所表征的观测似然度作为确认矩阵小概率事件划分依据,消除确认矩阵中小概率事件对联合关联事件计算复杂度的影响。实验结果表明:多目标航迹聚集时,该算法在减少计算复杂度同时保持了较高关联精度,跟踪性能明显优于经典JPDA。 展开更多
关键词 多目标航迹 Meanshift 跟踪门 Bhattacharya似然度矩阵 联合概率数据关联
在线阅读 下载PDF
基于最大熵模糊聚类的快速多目标跟踪算法研究 被引量:10
4
作者 陈晓 李亚安 +1 位作者 蔚婧 李余兴 《西北工业大学学报》 EI CAS CSCD 北大核心 2017年第4期629-634,共6页
为了提高杂波环境中多目标跟踪的实时性和精确性,利用最大熵数据模糊聚类方法得到的模糊隶属度表示目标与量测之间的关联概率,同时分析了公共量测对目标的影响,引入影响因子重建互联概率矩阵,结合概率数据关联算法实现多目标的状态估计... 为了提高杂波环境中多目标跟踪的实时性和精确性,利用最大熵数据模糊聚类方法得到的模糊隶属度表示目标与量测之间的关联概率,同时分析了公共量测对目标的影响,引入影响因子重建互联概率矩阵,结合概率数据关联算法实现多目标的状态估计。该算法避免了对确认矩阵的拆分,解决了联合概率数据关联算法随着目标和回波数目增加而导致的计算量爆炸性增长问题。针对不同杂波密度环境下的临近平行目标和小角度交叉目标的跟踪进行了仿真分析,仿真结果表明:最大熵模糊聚类联合概率数据关联算法是一种有效的快速数据关联算法,在密集杂波环境中跟踪性能依然优于联合概率数据关联算法和经验联合概率数据关联算法,在一定程度上可以避免航迹融合。 展开更多
关键词 多目标跟踪 联合概率数据关联 经验联合概率数据关联 最大熵模糊聚类联合概率数据关联
在线阅读 下载PDF
支持无线传感器网络多目标跟踪的聚类数据关联算法研究 被引量:1
5
作者 朱晓钢 杨兵 许华杰 《计算机科学》 CSCD 北大核心 2012年第B06期24-27,共4页
多源数据关联问题是无线传感器网络中多传感器数据融合的关键技术之一。联合概率数据关联算法是一种跟踪多目标的数据关联算法,它不需要任何关于目标和杂波的先验信息,但与其他有关数据关联算法相比,计算机开销大。基于聚类算法的联合... 多源数据关联问题是无线传感器网络中多传感器数据融合的关键技术之一。联合概率数据关联算法是一种跟踪多目标的数据关联算法,它不需要任何关于目标和杂波的先验信息,但与其他有关数据关联算法相比,计算机开销大。基于聚类算法的联合概率数据关联算法在联合概率数据关联算法的基础上,运用模式识别中的聚类思想对传感器所接收到的量测数据进行聚类,减少有效量测的数目,从而简化了有效矩阵,减少了原有算法的计算量。 展开更多
关键词 传感器网络 多目标跟踪 联合概率数据关联
在线阅读 下载PDF
杂波环境下基于最大熵模糊聚类的JPDA算法 被引量:4
6
作者 毕文豪 周杰 +1 位作者 张安 刘力 《系统工程与电子技术》 EI CSCD 北大核心 2023年第7期1920-1927,共8页
针对杂波环境下的多目标跟踪数据关联存在跟踪精度低、实时性差的问题,提出了一种基于最大熵模糊聚类的联合概率数据关联算法(joint probabilistic data association algorithm based on maximum entropy fuzzy clustering,MEFC-JPDA)... 针对杂波环境下的多目标跟踪数据关联存在跟踪精度低、实时性差的问题,提出了一种基于最大熵模糊聚类的联合概率数据关联算法(joint probabilistic data association algorithm based on maximum entropy fuzzy clustering,MEFC-JPDA)。首先,采用最大熵模糊聚类求得的隶属度初步表征目标与有效量测之间的关联概率。其次,采用基于目标距离的量测修正因子对关联概率进行调整,并建立关联概率矩阵。最后,结合卡尔曼滤波算法,对目标的状态进行加权更新。仿真结果表明,所提算法在杂波环境下的跟踪性能相比现有的两种关联算法有较大提升,是一种有效的多目标跟踪数据关联算法。 展开更多
关键词 多目标跟踪 联合概率数据关联 最大熵模糊 量测修正因子
在线阅读 下载PDF
一种基于模糊聚类的PHD航迹维持算法 被引量:10
7
作者 欧阳成 姬红兵 田野 《电子学报》 EI CAS CSCD 北大核心 2012年第6期1284-1288,共5页
针对杂波环境下数量变化的多目标航迹关联问题,提出一种基于模糊聚类的PHD航迹维持算法.该算法充分利用多帧信息,对当前时刻状态进行多步预测,并根据惯性进行加权,然后利用模糊聚类求得当前估计属于每条航迹的隶属度,从而得到最终的航迹... 针对杂波环境下数量变化的多目标航迹关联问题,提出一种基于模糊聚类的PHD航迹维持算法.该算法充分利用多帧信息,对当前时刻状态进行多步预测,并根据惯性进行加权,然后利用模糊聚类求得当前估计属于每条航迹的隶属度,从而得到最终的航迹.与传统的估计与航迹关联算法不同,该算法在更新每条航迹信息时,不仅仅是简单地对相邻帧之间的对数似然比进行求和,而是通过加权聚类等操作综合考虑了多帧信息.实验结果表明,所提算法能够更好地保持目标航迹,即使在目标出现交叉的地方也能达到很好的跟踪精度,具有较强的鲁棒性和优良的航迹维持性能. 展开更多
关键词 模糊 概率假设密度滤波 数据关联 航迹维持
在线阅读 下载PDF
采用粒子滤波和模糊聚类法的非线性多目标跟踪 被引量:6
8
作者 张俊根 姬红兵 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2010年第4期636-641,共6页
提出一种新的非线性多目标跟踪方法,用模糊聚类算法实现数据关联,采用粒子滤波实现对各目标的独立跟踪.首先利用最大熵模糊聚类对目标和观测数据进行关联,采用模糊隶属度重建多目标滤波中的联合关联概率矩阵.然后利用粒子滤波适于处理... 提出一种新的非线性多目标跟踪方法,用模糊聚类算法实现数据关联,采用粒子滤波实现对各目标的独立跟踪.首先利用最大熵模糊聚类对目标和观测数据进行关联,采用模糊隶属度重建多目标滤波中的联合关联概率矩阵.然后利用粒子滤波适于处理非线性问题的特点,通过联合关联信息,采用粒子滤波独立对各目标进行滤波,实现对目标状态的更新.最后,将该算法应用于多传感器多目标纯方位角跟踪.仿真结果表明,相比于联合概率数据关联算法及MEF-JPDAF,新算法具有更高的跟踪精度. 展开更多
关键词 非线性多目标跟踪 数据关联 最大熵模糊 独立粒子滤波 纯方位角跟踪
在线阅读 下载PDF
基于目标预测值模糊化的模糊数据关联算法 被引量:4
9
作者 杨力 刘金梅 王茂安 《探测与控制学报》 CSCD 北大核心 2008年第3期72-76,80,共6页
对传统模糊数据关联算法进行了分析,针对其利用最大隶属值赋值原则对目标进行跟踪时可能存在误跟或跟错的情况,提出了基于目标预测值模糊化的模糊数据关联算法。首先将预测航迹进行距离模糊化,建立联合关联区并舍去关联区以外的点迹,降... 对传统模糊数据关联算法进行了分析,针对其利用最大隶属值赋值原则对目标进行跟踪时可能存在误跟或跟错的情况,提出了基于目标预测值模糊化的模糊数据关联算法。首先将预测航迹进行距离模糊化,建立联合关联区并舍去关联区以外的点迹,降低模糊数据关联分割矩阵的维数;然后对分割矩阵运用整体最优原则,将问题转化为0-1规划问题,实现数据的模糊关联;最后对算法进行仿真,结果表明:采用新算法能有效改进传统算法的缺陷,提高数据关联的可靠度。 展开更多
关键词 模糊数据关联 多传感器数据融合 联合关联 模糊均值
在线阅读 下载PDF
基于m-best数据关联和小轨迹关联多目标跟踪算法 被引量:2
10
作者 谷晓琳 周石琳 雷琳 《系统工程与电子技术》 EI CSCD 北大核心 2017年第7期1640-1646,共7页
视频多目标跟踪中目标较多时,联合概率数据关联算法计算量大,实时性差。由于遮挡等问题,联合概率数据关联算法得到的往往是目标的轨迹片段。针对上述问题,首先利用线性规划自适应迭代求解m个最优联合事件简化联合概率数据关联算法,然后... 视频多目标跟踪中目标较多时,联合概率数据关联算法计算量大,实时性差。由于遮挡等问题,联合概率数据关联算法得到的往往是目标的轨迹片段。针对上述问题,首先利用线性规划自适应迭代求解m个最优联合事件简化联合概率数据关联算法,然后提出基于Kalman滤波及外推法的双向运动预测计算轨迹间的距离矩阵,用近邻传播聚类对目标的轨迹片段进行关联。实验结果表明,本文提出的方法在目标多且容易发生遮挡的情况下仍能够实时有效的跟踪,提高了跟踪准确度,具有一定的抗干扰能力。 展开更多
关键词 多目标跟踪 联合概率数据关联 线性规划 运动预测 近邻传播
在线阅读 下载PDF
基于改进PDA的弱点状多目标交叉运动跟踪算法 被引量:1
11
作者 康玲 艾斯卡尔.艾木都拉 贾振红 《计算机工程与应用》 CSCD 北大核心 2010年第11期145-147,157,共4页
采用独立跟踪区域的划分和公共量测点数据的去藕聚类技术,将原本只适用于单目标跟踪的概率数据关联(PDA)算法改造成能够在强杂波环境中跟踪多个点状目标交叉运动的情况。该算法比传统基于JPDA(联合数据关联)的多目标跟踪算法的计算量和... 采用独立跟踪区域的划分和公共量测点数据的去藕聚类技术,将原本只适用于单目标跟踪的概率数据关联(PDA)算法改造成能够在强杂波环境中跟踪多个点状目标交叉运动的情况。该算法比传统基于JPDA(联合数据关联)的多目标跟踪算法的计算量和复杂度都小。仿真试验表明,该跟踪算法具有高精度的跟踪性能。 展开更多
关键词 概率数据关联 联合数据关联 独立跟踪区域 强杂波 去藕
在线阅读 下载PDF
杂波背景下自适应IMM机动目标跟踪算法 被引量:7
12
作者 杜明洋 毕大平 王树亮 《现代雷达》 CSCD 北大核心 2018年第7期47-53,共7页
针对杂波背景下多机动目标跟踪问题,提出一种基于时变转移概率交互式多模型(IMM)的模糊数据关联跟踪算法。首先,针对传统IMM算法模型转移概率假设为常数导致模型间过度竞争的问题,基于贝叶斯理论,推导出一种时变模型转移概率IMM... 针对杂波背景下多机动目标跟踪问题,提出一种基于时变转移概率交互式多模型(IMM)的模糊数据关联跟踪算法。首先,针对传统IMM算法模型转移概率假设为常数导致模型间过度竞争的问题,基于贝叶斯理论,推导出一种时变模型转移概率IMM算法,增强了优势模型的利用率;其次,针对传统JPDA算法由于聚矩阵拆分而导致的计算组合爆炸问题,利用模糊聚类的方法,直接计算相关波门内候选量测与目标间的关联概率,用概率加权对目标进行状态和协方差的更新。仿真实验表明:算法对不同机动目标的跟踪适应性得到增强,相比传统的JPDA算法,在保证跟踪精度的基础上其时间性能比较优越,是一种较为实用的工程应用算法。 展开更多
关键词 多目标跟踪 交互式多模型联合概率数据关联 转移概率 数据互联 模糊
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部