期刊文献+
共找到665篇文章
< 1 2 34 >
每页显示 20 50 100
AE-EM:一种期望最大化Web入侵检测算法
1
作者 尹兆良 黄于欣 余正涛 《计算机工程与应用》 北大核心 2025年第3期315-325,共11页
现有的入侵检测算法集中在模式匹配、阈值分割法和多层感知机等机器学习和以神经网络深度学习方法上,在处理基于签名和异常的入侵时效果显著,但耗时费力。在面对Web入侵场景时,现有方法将检测模式重心放在网络流量分析(NTA)上,对URL携... 现有的入侵检测算法集中在模式匹配、阈值分割法和多层感知机等机器学习和以神经网络深度学习方法上,在处理基于签名和异常的入侵时效果显著,但耗时费力。在面对Web入侵场景时,现有方法将检测模式重心放在网络流量分析(NTA)上,对URL携带的负载信息和流量之间的关联语义信息提取不足,异常检测效果有待提升。提出一种无监督算法,名为注意力扩展期望最大化算法(attention expand expectation-maximization algorithm,AE-EM),该算法提取应用层URL中的攻击负载语义,采用Attention机制混合编码网络层流量结构化数据,训练融合多维特征和关联应用层语义的向量作为算法的输入,使用轻量化期望最大化算法估计高斯混合模型的参数,用于网络安全入侵检测的Web入侵检测场景。通过在基线数据集上使用常用的学习算法和消融实验比较,提出的AE-EM算法在Web入侵检测领域准确率和性能上优于传统算法。 展开更多
关键词 入侵检测 Web攻击检测 注意力机制 em算法 AE-em算法
在线阅读 下载PDF
基于EM算法与混合模型的动态聚类分析
2
作者 金向阳 章惠民 +1 位作者 王语涵 林建华 《厦门大学学报(自然科学版)》 北大核心 2025年第4期727-739,共13页
[目的]对2022年福建漳州烟草公司品牌销售数据开展动态聚类,以揭示数据深层结构,支撑市场策略优化.[方法]研究综合运用EM算法与高斯混合模型进行参数估计及动态聚类.依托统计软件实现算法流程,包括参数初始化、EM迭代优化及基于概率分... [目的]对2022年福建漳州烟草公司品牌销售数据开展动态聚类,以揭示数据深层结构,支撑市场策略优化.[方法]研究综合运用EM算法与高斯混合模型进行参数估计及动态聚类.依托统计软件实现算法流程,包括参数初始化、EM迭代优化及基于概率分布的聚类,严格遵循统计原则保障结果客观性.[结果]新算法有效估计概率模型参数,实现烟草品牌精准动态聚类.分析揭示了各品牌类别的差异化特征,为市场策略定制及产品组合优化提供依据.算法准确计算品牌在各类别中的概率分布,增强了决策的精准性.同时,算法具备灵活性与适应性,可随市场变化动态调整.[结论]本研究提出的基于混合高斯分布与EM算法的数据分析方法,为市场数据分析提供了新视角.该方法提高了数据分析的精度与效率,助力企业在复杂市场环境中制定科学策略,具有良好的应用价值与推广前景. 展开更多
关键词 概率模型 em算法 混合分布 动态聚类
在线阅读 下载PDF
双区间删失数据下基于Stochastic EM算法的比例优势模型的估计研究
3
作者 王淑影 李红伟 赵波 《应用概率统计》 北大核心 2025年第3期434-447,共14页
潜伏期是流行病学、疾病进展研究等关心的重要指标之一,对疾病防控及治疗具有重要作用.潜伏期是从病毒感染到产生症状这两个事件发生时间的间隔时间,并且这两个发生时间均有可能出现删失,于是产生了双区间删失数据.在双区间删失数据的... 潜伏期是流行病学、疾病进展研究等关心的重要指标之一,对疾病防控及治疗具有重要作用.潜伏期是从病毒感染到产生症状这两个事件发生时间的间隔时间,并且这两个发生时间均有可能出现删失,于是产生了双区间删失数据.在双区间删失数据的研究中,后续时间仅考虑发生右删失或区间删失的研究很多,考虑右删失和区间删失同时存在的研究成果相对较少;此外研究方法大多基于Cox模型.本文在后续时间同时存在右删失和区间删失的这类双区间删失数据下建立比例优势模型,利用Stochastic EM算法处理双区间删失数据并进行极大似然估计.通过模拟研究评估了所提方法在有限样本下的优良性,接着利用该方法分析了AIDS数据. 展开更多
关键词 双区间删失数据 比例优势模型 Stochastic em算法 拒绝抽样
在线阅读 下载PDF
基于Bayesian的期望最大化方法——BEM算法 被引量:5
4
作者 温津伟 罗四维 +1 位作者 赵嘉莉 韩臻 《计算机研究与发展》 EI CSCD 北大核心 2001年第7期821-825,共5页
通过对标准 EM算法收敛于局部极值的原因进行分析 ,提出了基于 Bayesian方法的神经网络新学习算法—— BEM算法 .该算法解决了标准 EM算法的上述缺陷 ,同时还可防止标准 EM算法 Overfitting情况的出现 ,并可防止标准 EM算法有时只响应... 通过对标准 EM算法收敛于局部极值的原因进行分析 ,提出了基于 Bayesian方法的神经网络新学习算法—— BEM算法 .该算法解决了标准 EM算法的上述缺陷 ,同时还可防止标准 EM算法 Overfitting情况的出现 ,并可防止标准 EM算法有时只响应单一模式而失去泛化能力情况的出现 .实验结果表明了该算法的正确性和有效性 .该算法对研究和发展标准 展开更多
关键词 随机神经网络 em算法 Bayesian方法 Wishart-Gaussian分布
在线阅读 下载PDF
基于PSO求解随机期望值模型的混合智能算法 被引量:8
5
作者 肖宁 曾建潮 李卫斌 《计算机工程与应用》 CSCD 北大核心 2009年第10期45-48,共4页
随机期望值模型是一类有着广泛应用背景的随机规划问题,为了寻找更为高效的求解随机期望值模型的算法,采用随机仿真产生样本训练BP网络以逼近随机函数,然后应用微粒群算法并以逼近随机函数的神经元网络作为适应值估计和实现为了检验解... 随机期望值模型是一类有着广泛应用背景的随机规划问题,为了寻找更为高效的求解随机期望值模型的算法,采用随机仿真产生样本训练BP网络以逼近随机函数,然后应用微粒群算法并以逼近随机函数的神经元网络作为适应值估计和实现为了检验解的可行性,从而提出了一种求解随机期望值模型的混合智能算法。最后通过两个实例的仿真结果说明了算法的正确性和有效性。 展开更多
关键词 随机规划 随机期望值模型 微粒群算法 随机仿真 神经网络
在线阅读 下载PDF
基于期望值最大算法的图像融合 被引量:2
6
作者 刘刚 敬忠良 孙韶媛 《激光与红外》 CAS CSCD 北大核心 2005年第2期130-133,共4页
文中提出了一种基于期望值最大的图像融合方法。该方法首先假设图像对场景的成像模型。以期望值作为目标函数,通过使目标函数最大的方法确定该模型的参数,估计出真实场景,进而得到理想的融合图像。试验表明,该方法比传统的基于加权平均... 文中提出了一种基于期望值最大的图像融合方法。该方法首先假设图像对场景的成像模型。以期望值作为目标函数,通过使目标函数最大的方法确定该模型的参数,估计出真实场景,进而得到理想的融合图像。试验表明,该方法比传统的基于加权平均和选择的方法具有更好的融合效果。 展开更多
关键词 图像融合 期望值最大算法 高斯混合模型 图像多尺度交换
在线阅读 下载PDF
概率区间型决策中求方案期望值极值的简便算法 被引量:15
7
作者 谢凡荣 《运筹与管理》 CSCD 2001年第4期42-48,共7页
给出了一个求概率区间型决策中方案的最大期望值和最小期望值的简便算法 ,证明了该算法的正确性 。
关键词 算法 概率区间型决策 方案期望值
在线阅读 下载PDF
期望最大(EM)算法及其在混合高斯模型中的应用 被引量:21
8
作者 朱周华 《现代电子技术》 2003年第24期88-90,共3页
将期望最大 (EM)算法应用于混合高斯模型中 ,通过对算法的介绍及其分析 ,得出 EM算法是参数估计的一种有效算法 ,他大大降低了计算复杂度 ,但性能却与最大似然估计相近 ,具有很好的实际应用价值。
关键词 em算法 混合高斯模型 参数估计 应用
在线阅读 下载PDF
一种求解随机期望值模型的有效算法 被引量:1
9
作者 肖宁 曾建潮 《智能系统学报》 2008年第3期279-282,共4页
随机期望值模型是一类有着广泛应用背景的随机规划问题.为了寻找更为有效的求解随机期望值模型的算法,通过采用随机仿真来逼近随机函数,在微粒群算法中利用随机仿真进行适应值估计和实现为了检验解的可行性,从而给出了求解随机期望值模... 随机期望值模型是一类有着广泛应用背景的随机规划问题.为了寻找更为有效的求解随机期望值模型的算法,通过采用随机仿真来逼近随机函数,在微粒群算法中利用随机仿真进行适应值估计和实现为了检验解的可行性,从而给出了求解随机期望值模型的新的算法.最后,通过实例仿真说明了算法的正确性和有效性. 展开更多
关键词 随机规划 随机期望值模型 微粒群算法 随机仿真
在线阅读 下载PDF
带有偏正态误差的众数回归模型最大似然估计的EM算法 被引量:1
10
作者 姜喆 王丹璐 吴刘仓 《高校应用数学学报(A辑)》 北大核心 2024年第2期141-151,共11页
经典的多元线性回归模型要求残差满足高斯-马尔柯夫假设(G-M),在实际生活中由于数据的随机性往往很难满足这个条件.利用Sahu等在2003年提出的偏正态分布来拓展经典的回归模型,给出了偏正态分布众数的近似表达式,建立了偏正态分布下均值... 经典的多元线性回归模型要求残差满足高斯-马尔柯夫假设(G-M),在实际生活中由于数据的随机性往往很难满足这个条件.利用Sahu等在2003年提出的偏正态分布来拓展经典的回归模型,给出了偏正态分布众数的近似表达式,建立了偏正态分布下均值和众数多元线性回归模型.在求解模型的参数估计时使用偏正态分布的分层表示构造EM算法.在M步统一给出两点步长梯度下降算法,同时也对均值模型给出显示迭代表达式.最后通过模拟分析以及实例来讨论两种回归模型的可行性. 展开更多
关键词 偏正态分布 众数回归模型 均值回归模型 高斯-马尔柯夫假设 em算法
在线阅读 下载PDF
混合Beta分布GARCH模型的EM算法求解与实证分析 被引量:1
11
作者 石凯 刘洪江 孙峰 《统计与决策》 CSSCI 北大核心 2024年第2期160-164,共5页
GARCH模型在处理时序数据异方差问题中得到广泛应用,然而在面临一些特殊领域的数据,尤其是金融市场领域中具有高峰厚尾、非对称性、有界取值区间等特征的数据时,传统正态分布的基本假设往往与现实严重不一致。针对此类问题,文章提出混合... GARCH模型在处理时序数据异方差问题中得到广泛应用,然而在面临一些特殊领域的数据,尤其是金融市场领域中具有高峰厚尾、非对称性、有界取值区间等特征的数据时,传统正态分布的基本假设往往与现实严重不一致。针对此类问题,文章提出混合Beta分布的GARCH模型,并给出了基于完全数据最大似然函数的EM算法估计模型的参数,以仿真模拟数据和金融市场现实数据为例,进行了实证分析。结果显示,在违背正态分布假设的情形下,混合Beta分布GARCH模型更能有效地提炼波动的一系列非正态性信息,同时也验证了EM算法对模型的参数求解行之有效。 展开更多
关键词 GARCH模型 混合Beta分布 em算法 参数估计
在线阅读 下载PDF
基于期望值最大算法和离散小波框架的图像融合 被引量:4
12
作者 刘刚 敬忠良 孙韶媛 《自动化学报》 EI CSCD 北大核心 2005年第5期699-704,共6页
The discrete wavelet transform has become an attractive tool for fusing multisensor images. This paper investigates the discrete wavelet frame transform. A major advantage of this method over discrete wavelet transfor... The discrete wavelet transform has become an attractive tool for fusing multisensor images. This paper investigates the discrete wavelet frame transform. A major advantage of this method over discrete wavelet transform is aliasing free and translation invariant. The discrete wavelet frame (DWF) transform is used to decompose the registered images into multiscale representation with the low frequency and the high frequency bands. The low frequency band is normalized and fused by using the expectation maximization (EM) algorithm. The informative importance measure is applied to the high frequency band. The final fused image is obtained by taking the inverse transform on the composite coefficient representations. Experiments show that the proposed method is more effective than conventional image fusion methods. 展开更多
关键词 期望值 最大算法 离散小波框架 图像融合
在线阅读 下载PDF
基于EM和贝叶斯网络的丢失数据填充算法 被引量:21
13
作者 李宏 阿玛尼 +1 位作者 李平 吴敏 《计算机工程与应用》 CSCD 北大核心 2010年第5期123-125,共3页
实际应用中存在大量的丢失数据的数据集,对丢失数据的处理已成为目前分类领域的研究热点。分析和比较了几种通用的丢失数据填充算法,并提出一种新的基于EM和贝叶斯网络的丢失数据填充算法。算法利用朴素贝叶斯估计出EM算法初值,然后将E... 实际应用中存在大量的丢失数据的数据集,对丢失数据的处理已成为目前分类领域的研究热点。分析和比较了几种通用的丢失数据填充算法,并提出一种新的基于EM和贝叶斯网络的丢失数据填充算法。算法利用朴素贝叶斯估计出EM算法初值,然后将EM和贝叶斯网络结合进行迭代确定最终更新器,同时得到填充后的完整数据集。实验结果表明,与经典填充算法相比,新算法具有更高的分类准确率,且节省了大量开销。 展开更多
关键词 丢失数据填充 参数更新器 最大期望值算法(em) 贝叶斯网络
在线阅读 下载PDF
基于EM算法的宽带信号DOA估计及盲分离 被引量:12
14
作者 熊坤来 刘章孟 +2 位作者 柳征 姜文利 汪华兴 《电子学报》 EI CAS CSCD 北大核心 2015年第10期2028-2033,共6页
本文提出了一种基于EM算法的宽带信号DOA估计与盲分离方法.首先将宽带混合信号转换到频域,然后综合利用带宽内所有频点信息建立似然函数,在此基础上推导出宽带条件下的EM迭代式,从而实现宽带信号DOA及波形的联合估计.并且本文通过分析E... 本文提出了一种基于EM算法的宽带信号DOA估计与盲分离方法.首先将宽带混合信号转换到频域,然后综合利用带宽内所有频点信息建立似然函数,在此基础上推导出宽带条件下的EM迭代式,从而实现宽带信号DOA及波形的联合估计.并且本文通过分析EM算法的收敛性,自适应的设定角度搜索空间,提高了算法的运算效率.与传统方法相比,本文方法运用的有效信息更多,因此,其在DOA估计精度及波形恢复性能方面都更有优势.仿真实验表明了该算法的有效性. 展开更多
关键词 宽带信号 em算法 DOA 估计 信号分离
在线阅读 下载PDF
一种基于高斯混合模型的改进EM算法研究 被引量:11
15
作者 宋磊 郑宝忠 +5 位作者 张莹 闫丽 卫宏 刘建鹏 李涛 杨恒 《应用光学》 CAS CSCD 北大核心 2013年第6期985-989,共5页
针对传统EM算法存在估计参数不具有最优性,以及在参数估计中需要人工参与等问题,提出一种基于高斯混合模型的改进EM算法。采用无人工参与的无监督思想,获取高斯混合模型对直方图拟合的最优参数组合。实验表明,该算法不仅能够快速地估计... 针对传统EM算法存在估计参数不具有最优性,以及在参数估计中需要人工参与等问题,提出一种基于高斯混合模型的改进EM算法。采用无人工参与的无监督思想,获取高斯混合模型对直方图拟合的最优参数组合。实验表明,该算法不仅能够快速地估计模型参量,而且能够给出最优参数,并在图像增强中使细节更明显,对比度更适中。 展开更多
关键词 em算法 高斯混合模型 图像增强
在线阅读 下载PDF
基于自训练EM算法的半监督文本分类 被引量:17
16
作者 张博锋 白冰 苏金树 《国防科技大学学报》 EI CAS CSCD 北大核心 2007年第6期65-69,共5页
为了提高计算效率,提出基于自训练的改进EM算法STEM。在每步迭代的E-step中,将中间分类器最有把握对其类别进行预测的未标注样本转移至标注样本集,并应用到M-step中进行下一个中间分类器的训练,从而引入了利用中间结果的自训练机制。文... 为了提高计算效率,提出基于自训练的改进EM算法STEM。在每步迭代的E-step中,将中间分类器最有把握对其类别进行预测的未标注样本转移至标注样本集,并应用到M-step中进行下一个中间分类器的训练,从而引入了利用中间结果的自训练机制。文本分类实验表明STEM算法在大部分情况下的分类准确性都高于EM,并通过减少迭代提高了分类器学习的计算效率。 展开更多
关键词 半监督学习 em算法 自训练 文本分类 NAIVE BAYES
在线阅读 下载PDF
基于多特征的EM算法在昆虫图像分割中的应用 被引量:11
17
作者 程小梅 耿国华 +1 位作者 周明全 黄世国 《计算机应用与软件》 CSCD 2009年第2期20-22,82,共4页
提出了一种基于多特征的EM(Expectation-maximizarion)聚类的昆虫图像分割方法。与一般的EM算法不同,这种方法首先选用适当的彩色空间对图像中的每个像素抽取颜色、纹理及空间位置等综合特征,形成基于像素的8维综合特征空间,然后采用高... 提出了一种基于多特征的EM(Expectation-maximizarion)聚类的昆虫图像分割方法。与一般的EM算法不同,这种方法首先选用适当的彩色空间对图像中的每个像素抽取颜色、纹理及空间位置等综合特征,形成基于像素的8维综合特征空间,然后采用高斯混合模型,通过EM算法估计高斯混合模型参数,利用图像像素点特征的相似度在特征空间中得到初步的区域分割,最后利用连接原理对图像区域进一步分割。实验结果表明,算法能较好地分割昆虫图像。 展开更多
关键词 特征抽取 em算法 聚类 昆虫图像分割
在线阅读 下载PDF
基于快速EM算法和模糊融合的多波段遥感影像变化检测 被引量:15
18
作者 王桂婷 王幼亮 焦李成 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2010年第5期383-388,共6页
提出了一种基于快速EM(expectation maximization)算法和模糊融合的多波段遥感影像无监督变化检测方法.该方法首先对各波段差异影像采用基于直方图分析的快速EM迭代算法获取变化分类阈值和变化信息,随后对各波段的变化信息进行模糊融合... 提出了一种基于快速EM(expectation maximization)算法和模糊融合的多波段遥感影像无监督变化检测方法.该方法首先对各波段差异影像采用基于直方图分析的快速EM迭代算法获取变化分类阈值和变化信息,随后对各波段的变化信息进行模糊融合和判决,生成最终的变化检测图.利用真实的多波段遥感影像进行了实验,本文方法在运行时间和检测效果两个方面都具有优越性. 展开更多
关键词 变化检测 快速em算法 模糊融合 多波段遥感影像
在线阅读 下载PDF
多时段公交发车间隔优化的随机期望值模型 被引量:6
19
作者 许旺土 何世伟 +2 位作者 宋瑞 赵莉 何必胜 《北京理工大学学报》 EI CAS CSCD 北大核心 2009年第8期676-680,共5页
研究随机事件条件下单条公交线路不同运营时段内的发车间隔确定方法.对该公交系统中的相关随机事件做了基本假设,依此建立了以社会福利最大为目标函数的多时段发车间隔优化随机期望值模型.由于该模型的目标函数为不连续函数,其不连续点... 研究随机事件条件下单条公交线路不同运营时段内的发车间隔确定方法.对该公交系统中的相关随机事件做了基本假设,依此建立了以社会福利最大为目标函数的多时段发车间隔优化随机期望值模型.由于该模型的目标函数为不连续函数,其不连续点发生在运营时段改变之时,因此设计了混合智能求解算法,其中嵌入了随机模拟、神经网络和遗传算法.并采用一个算例讨论了该发车间隔确定模型的有效性及求解算法的效率.该混合智能算法在求解随机期望值模型时效率较高,但容易陷入局部最优解. 展开更多
关键词 多时段发车间隔 随机期望值模型 混合智能算法 随机模拟 神经网络 遗传算法
在线阅读 下载PDF
结合EM/MPM算法和Voronoi划分的图像分割方法 被引量:9
20
作者 赵泉华 李玉 何晓军 《信号处理》 CSCD 北大核心 2013年第4期503-512,共10页
为了在模型参数先验分布知识未知情况下实现基于区域和统计的图像分割,并同时获取更加精确的模型参数,提出了一种结合Voronoi划分技术、最大期望值(Expectation Maximization,EM)和最大边缘概率(Maximizationof the Posterior Marginal,... 为了在模型参数先验分布知识未知情况下实现基于区域和统计的图像分割,并同时获取更加精确的模型参数,提出了一种结合Voronoi划分技术、最大期望值(Expectation Maximization,EM)和最大边缘概率(Maximizationof the Posterior Marginal,MPM)算法的图像分割方法。该方法利用Voronoi划分技术将图像域划分为若干子区域,待分割图像中的同质区域可以由一组子区域拟合而成,并假定各同质区域内像素强度服从同一独立的正态分布,从而建立图像模型,然后结合EM/MPM算法进行图像分割和模型参数估计,其中,MPM算法用于实现面向同质区域的图像分割,EM算法用于估计图像模型参数。为了验证提出的图像分割方法,分别对合成图像和真实图像进行了分割实验,并和传统的基于像素的MRF分割结果进行对比,测试结果的定性和定量分析表明了该方法的有效性和准确性。 展开更多
关键词 VORONOI划分 最大期望值算法 最大边缘概率算法 图像分割
在线阅读 下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部