期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
基于最大最小距离法的多中心聚类算法 被引量:72
1
作者 周涓 熊忠阳 +1 位作者 张玉芳 任芳 《计算机应用》 CSCD 北大核心 2006年第6期1425-1427,共3页
针对k-means算法的缺陷,提出了一种新的多中心聚类算法。运用两阶段最大最小距离法搜索出最佳初始聚类中心,将原始数据集分割成小类后用合并算法形成最终类,即用多个聚类中心联合代表一个延伸状或者较大形状的簇。仿真实验表明:该算法... 针对k-means算法的缺陷,提出了一种新的多中心聚类算法。运用两阶段最大最小距离法搜索出最佳初始聚类中心,将原始数据集分割成小类后用合并算法形成最终类,即用多个聚类中心联合代表一个延伸状或者较大形状的簇。仿真实验表明:该算法能够智能地确定初始聚类种子个数,对不规则状数据集进行有效聚类,聚类性能显著优于k-means算法。 展开更多
关键词 聚类 最大最小距离法 多中心 抽样
在线阅读 下载PDF
粒计算优化初始聚类中心的K-medoids聚类算法 被引量:13
2
作者 谢娟英 鲁肖肖 +1 位作者 屈亚楠 高红超 《计算机科学与探索》 CSCD 北大核心 2015年第5期611-620,共10页
针对快速K-medoids聚类算法所选初始聚类中心可能位于同一类簇的缺陷,以及基于粒计算的K-medoids算法构造样本去模糊相似矩阵时需要主观给定阈值的缺陷,提出了粒计算优化初始聚类中心的K-medoids聚类算法。该算法结合粒计算与最大最小... 针对快速K-medoids聚类算法所选初始聚类中心可能位于同一类簇的缺陷,以及基于粒计算的K-medoids算法构造样本去模糊相似矩阵时需要主观给定阈值的缺陷,提出了粒计算优化初始聚类中心的K-medoids聚类算法。该算法结合粒计算与最大最小距离法,优化K-medoids算法初始聚类中心的选取,选择处于样本分布密集区域且相距较远的K个样本作为初始聚类中心;使用所有样本的相似度均值作为其构造去模糊相似矩阵的阈值。人工模拟数据集和UCI机器学习数据库数据集的实验测试表明,新K-medoids聚类算法具有更稳定的聚类效果,其准确率和Adjusted Rand Index等聚类结果评价指标值优于传统K-medoids聚类算法、快速K-medoids聚类算法和基于粒计算的K-medoids聚类算法。 展开更多
关键词 粒计算 初始聚类中心 最大最小距离法 K-me doids聚类算
在线阅读 下载PDF
基于粒计算的粗糙集聚类算法 被引量:9
3
作者 李莲 罗可 周博翔 《计算机应用研究》 CSCD 北大核心 2013年第10期2916-2919,共4页
针对传统K-means聚类算法初始聚类中心随机选取、不能处理边界对象、效率低、聚类精度低等问题,提出了一种新的K-means聚类算法。算法引入粒计算理论,并依据密度和最大最小距离法选择初始聚类中心,避免初始聚类中心在同一个类中,结合粗... 针对传统K-means聚类算法初始聚类中心随机选取、不能处理边界对象、效率低、聚类精度低等问题,提出了一种新的K-means聚类算法。算法引入粒计算理论,并依据密度和最大最小距离法选择初始聚类中心,避免初始聚类中心在同一个类中,结合粗糙集,通过动态调整上近似集和边界集的权重因子,以解决边界数据的聚类问题;最后采用类间距和类内距均衡化准则函数作为算法终止判断条件,来得到更好的聚类效果。实验结果表明:该算法具有较高的准确率,迭代次数较少,并降低了对噪声的敏感程度。 展开更多
关键词 聚类 粗糙集 粒计算 K-均值 准则优化 最大最小距离法
在线阅读 下载PDF
一种改进的基于粒子群的聚类算法 被引量:14
4
作者 杨志 罗可 《计算机应用研究》 CSCD 北大核心 2014年第9期2597-2599,2605,共4页
针对K-means对初始聚类中心敏感和易陷入局部最优的缺点,提出了一种改进的基于粒子群的聚类算法。该算法结合基于密度和最大最小距离法来确定初始聚类中心,解决K-means对初始值敏感的问题;利用粒子群算法全局寻优能力强的优点,避免K-me... 针对K-means对初始聚类中心敏感和易陷入局部最优的缺点,提出了一种改进的基于粒子群的聚类算法。该算法结合基于密度和最大最小距离法来确定初始聚类中心,解决K-means对初始值敏感的问题;利用粒子群算法全局寻优能力强的优点,避免K-means陷入局部最优。通过对样本集各维属性的规范化处理,惯性权值采用凹函数递减,计算相异度矩阵,引入用群体适应度方差,进一步优化混合算法。实验结果表明,该算法具有更高的准确率和更强的收敛能力。 展开更多
关键词 聚类算 粒子群优化算 相异度矩阵 最大最小距离法 K-MEANS 适应度方差
在线阅读 下载PDF
加速大数据聚类K-means算法的改进 被引量:14
5
作者 韩岩 李晓 《计算机工程与设计》 北大核心 2015年第5期1317-1320,共4页
为有效处理大规模数据聚类的问题,提出一种先抽样再用最大最小距离进行K-means并行化聚类的方法。基于抽样的方法避免了聚类陷入局部解中,基于最大最小距离法使得初始聚类中心趋于最优化。大量实验结果表明,无论是在单机环境还是集群环... 为有效处理大规模数据聚类的问题,提出一种先抽样再用最大最小距离进行K-means并行化聚类的方法。基于抽样的方法避免了聚类陷入局部解中,基于最大最小距离法使得初始聚类中心趋于最优化。大量实验结果表明,无论是在单机环境还是集群环境下,该方法受初始聚类中心的影响降低,提高了聚类的准确性,减少了聚类的迭代次数,降低了聚类的时间。 展开更多
关键词 K-均值算 随机抽样 最大最小距离法 映射归约 并行化
在线阅读 下载PDF
一种有效的Gk-prototypes聚类算法 被引量:1
6
作者 郭映江 徐蔚鸿 +1 位作者 陈沅涛 文泽林 《计算机工程与科学》 CSCD 北大核心 2019年第9期1693-1699,共7页
针对传统的聚类算法对初始聚类中心敏感、只能对单一属性聚类且聚类效果有时欠佳等不足,提出了一种能处理数值属性和分类属性的Gk-prototypes聚类算法。在经典的k-prototypes聚类算法的基础上,利用去模糊相似矩阵来构造粗粒子集,结合粒... 针对传统的聚类算法对初始聚类中心敏感、只能对单一属性聚类且聚类效果有时欠佳等不足,提出了一种能处理数值属性和分类属性的Gk-prototypes聚类算法。在经典的k-prototypes聚类算法的基础上,利用去模糊相似矩阵来构造粗粒子集,结合粒计算和最大最小距离法确定初始聚类中心,并改进了目标函数。实验结果和理论分析表明,Gk-prototypes聚类算法与其他基于k-prototypes的改进算法相比,聚类更准确,有效性更好,鲁棒性更强。 展开更多
关键词 k-prototypes聚类 去模糊相似矩阵 粒计算 最大最小距离法
在线阅读 下载PDF
引入改进飞蛾扑火的K均值交叉迭代聚类算法 被引量:15
7
作者 黄鹤 李昕芮 +3 位作者 吴琨 郭璐 王会峰 茹锋 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第9期32-39,共8页
针对现有K均值聚类(KMC)算法在选取初始聚类中心时随机性较大、全局搜索能力差、聚类精度低等问题,提出了一种引入改进飞蛾扑火的K均值交叉迭代聚类(IMFO-KMC)算法。利用最大最小距离积法初始化聚类中心,避免了KMC算法对随机初始聚类中... 针对现有K均值聚类(KMC)算法在选取初始聚类中心时随机性较大、全局搜索能力差、聚类精度低等问题,提出了一种引入改进飞蛾扑火的K均值交叉迭代聚类(IMFO-KMC)算法。利用最大最小距离积法初始化聚类中心,避免了KMC算法对随机初始聚类中心较为敏感的问题;利用样条插值预测的思想改进飞蛾扑火算法,提高了算法的收敛速度及寻优精度;以类内平均距离为适应度函数,引导插值扑火算法优化KMC迭代过程中的聚类中心,提高了聚类精度。将IMFOKMC与KMC、K-means++算法、模糊c均值聚类算法在国际标准数据集Iris、Wine和Seeds上进行了实验对比,结果表明:IMFO-KMC算法在Iris数据集上的性能提升最为明显,相比其他算法准确率提高了0.67%~4.18%,标准化互信息提高了1.5%~4.01%。 展开更多
关键词 飞蛾扑火算 聚类中心 K均值聚类 类内平均距离 最大最小距离
在线阅读 下载PDF
针对KMC局部最优问题的飞蛾捕焰优化方法 被引量:3
8
作者 郭璐 许哲 +2 位作者 黄鹤 张少帅 陈永安 《火力与指挥控制》 CSCD 北大核心 2021年第8期34-39,共6页
针对传统飞蛾捕焰(MFO)算法求解复杂函数时后期收敛速度慢与求解精度较低等问题,提出了一种基于快速收敛的飞蛾捕焰(RMFO)算法。采用最大最小距离积的方法来初始化飞蛾群,能够提高算法全局收敛速度并且优化解的质量,同时构造出MFO算法... 针对传统飞蛾捕焰(MFO)算法求解复杂函数时后期收敛速度慢与求解精度较低等问题,提出了一种基于快速收敛的飞蛾捕焰(RMFO)算法。采用最大最小距离积的方法来初始化飞蛾群,能够提高算法全局收敛速度并且优化解的质量,同时构造出MFO算法的适应度函数作为寻优函数。将RMFO算法和有K均值聚类算法(KMC)进行交叉迭代,构建基于RMFO优化的KMC算法,求解聚类中心时能够改善聚类性能,可以解决现有KMC算法选取初始聚类中心不确定陷入结果局部最优的问题。实验结果表明,通过用UCI国际通用测试数据库的Iris、Wine和Glass 3种数据集,对RMFO算法和优化KMC算法进行性能测试,提出的RMFO算法更加精准,收敛速度快,不易陷入局部最优解,同时,优化KMC算法的聚类性能更好。 展开更多
关键词 飞蛾捕焰算 收敛 聚类 最大最小距离 群体智能
在线阅读 下载PDF
基于随机跳跃蝠鲼算法优化的电影信息数据聚类
9
作者 黄鹤 李潇磊 +2 位作者 王珺 王会峰 茹锋 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第5期856-867,共12页
针对传统K均值聚类(K-Means Clustering,KMC)算法在对电影信息数据聚类的过程中,初始聚类中心选取随机性较大、聚类结果不稳定且算法容易陷入局部最优、影响迭代精度等不足,提出一种基于随机跳跃式翻滚觅食蝠鲼优化的K均值联合迭代聚类... 针对传统K均值聚类(K-Means Clustering,KMC)算法在对电影信息数据聚类的过程中,初始聚类中心选取随机性较大、聚类结果不稳定且算法容易陷入局部最优、影响迭代精度等不足,提出一种基于随机跳跃式翻滚觅食蝠鲼优化的K均值联合迭代聚类算法(MRRJRFO-KMC),实现对电影信息数据的聚类.首先,提出一种均值最大最小距离积法来初始化聚类中心,改善聚类中心选取的随机性,避免随机初始化对聚类结果造成的不稳定性.其次,在迭代的过程中加入蝠鲼觅食优化算法,并对蝠鲼觅食优化算法中螺旋觅食和翻滚觅食进行改进,提出一种随机跳跃式翻滚觅食蝠鲼优化的策略,解决了蝠鲼觅食优化算法易陷入局部最优的问题.将随机跳跃式翻滚觅食蝠鲼优化算法加入KMC算法,对KMC算法迭代过程中的聚类中心进行优化,提高了聚类精度.在Iris,Aggregation,Ecoli和Seeds国际标准数据集上对MRRJRFO-KMC算法、MRFO-KMC算法、KMC算法、K-Means++算法、模糊C均值(Fuzzy C-Means,FCM)聚类算法进行比较测试,实验结果表明,MRRJRFO-KMC算法和其他算法相比,准确性和收敛速度都有所提升.在电影信息数据处理过程中,该算法能够根据所给的信息进行有效的聚类,应用价值明显. 展开更多
关键词 蝠鲼觅食优化算 K均值聚类 均值最大最小距离 随机跳跃式翻滚 电影信息数据
在线阅读 下载PDF
RLDEAO优化的空气质量数据聚类分析
10
作者 田闯 黄鹤 +2 位作者 杨澜 王会峰 茹锋 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2024年第5期542-553,共12页
对空气质量数据进行聚类,传统聚类方法因受初始点的影响,存在随机性高、聚类精度低以及多个中心点出现在同一簇中的问题,为此提出了一种反向学习差分进化天鹰优化器(RLDEAO)优化的K-means互补迭代空气质量数据聚类方法。天鹰优化器(aqui... 对空气质量数据进行聚类,传统聚类方法因受初始点的影响,存在随机性高、聚类精度低以及多个中心点出现在同一簇中的问题,为此提出了一种反向学习差分进化天鹰优化器(RLDEAO)优化的K-means互补迭代空气质量数据聚类方法。天鹰优化器(aquila optimizer,AO)算法具有很强的探索能力,不易受初始点的影响且更易实现,但易陷入局部最优。基于自适应逐维小孔成像反向学习策略、停滞扰动结合莱维飞行策略以及生物进化策略等改进思想,对AO算法进行了改进,有效提高了搜索性能,避免了局部最优;在求取聚类中心点时,设计了一种加权最大最小距离积法(weighted maximum minimum distance product,WMMP),能反映各特征的重要性,对改进聚类结果作用良好;将RLDEAO与WMMP相结合优化K-means互补迭代,提高了搜索速率和搜索精度。通过在多个数据集上的聚类测试,发现RLDEAO-KMC算法的收敛精度和聚类效果较AO-KMC、FCM、KMC、KMC++算法更优。可知,RLDEAO-KMC算法可以更高效地对空气质量数据进行聚类分析,有针对性地做出预测和应对。 展开更多
关键词 K-MEANS聚类算 天鹰优化器(AO) 加权最大最小距离
在线阅读 下载PDF
弹道导弹助推段RCS序列仿真及尺寸分类估计 被引量:1
11
作者 隋栋训 童创明 +1 位作者 季明阳 王伟杰 《激光杂志》 北大核心 2015年第3期67-70,共4页
从低分辨窄带雷达的助推段RCS序列中能提取出弹道导弹识别的重要信息,但由于信息量有限,只能对导弹尺寸进行大致的分类估计。为了对导弹进行聚类分析,首先采用准静态法结合弹道导弹静态RCS仿真了导弹在助推段的RCS序列,为特征提取提供... 从低分辨窄带雷达的助推段RCS序列中能提取出弹道导弹识别的重要信息,但由于信息量有限,只能对导弹尺寸进行大致的分类估计。为了对导弹进行聚类分析,首先采用准静态法结合弹道导弹静态RCS仿真了导弹在助推段的RCS序列,为特征提取提供了依据;之后,在其基础上,提取出与导弹弹径相关的特征信息,采用最大最小距离法进行聚类识别,将不同尺寸弹道导弹分类,构建出数据库;最后,将目标导弹的特征信息与数据库内样本的特征信息进行聚类识别,从而得出目标尺寸的大致范围。最终的实验结果表明:利用助推段RCS序列提取目标特征能够实现目标尺寸的估计。 展开更多
关键词 弹道导弹 尺寸估计 最大最小距离法 助推段RCS序列
在线阅读 下载PDF
DHSSA优化的K均值互补迭代车型信息数据聚类 被引量:5
12
作者 黄鹤 李文龙 +3 位作者 杨澜 王会峰 王飚 茹锋 《汽车工程》 EI CSCD 北大核心 2022年第5期691-700,729,共11页
针对传统方法在车型信息数据聚类过程中受初始化中心点的影响较大导致聚类精度低、鲁棒性差以及在迭代过程中求取均值选择聚类中心受离群点影响大的问题,提出了一种DHSSA优化的K均值互补迭代车型信息数据聚类方法。首先,针对SSA算法中... 针对传统方法在车型信息数据聚类过程中受初始化中心点的影响较大导致聚类精度低、鲁棒性差以及在迭代过程中求取均值选择聚类中心受离群点影响大的问题,提出了一种DHSSA优化的K均值互补迭代车型信息数据聚类方法。首先,针对SSA算法中发现者位置更新不足和种群多样性不足的问题,设计了一种扰动因子-领头雀优化策略,通过自适应领头雀策略加强了最优个体的影响力,利用扰动因子扩大搜索空间,提升了寻找聚类中心的准确率;其次,设计了基于筛选最大最小距离积方法 SMMP优化聚类中心的初始化,在MMP基础上增加了筛选机制,使初始化的中心尽可能更均匀地分布在每个簇中;最后,融合DHSSA和SMMP来优化K均值互补迭代,在减小迭代次数的同时增加搜索效率,得到较好的聚类结果。利用多种数据集进行测试,通过试验结果中的收敛曲线和性能指标可以看出,提出的DHSSA-KMC方法相对于SSA-KMC、IMFO-KMC、KMC和KMC++具有更高的搜索精度、收敛速度和更低的聚类代价,并且耗时相对于SSA-KMC和IMFO-KMC有所减少,证明了算法的有效性和优越性。在车型信息数据处理过程中,DHSSA-KMC可以高效聚类生成竞品车型供消费者选择,应用价值明显。 展开更多
关键词 K均值聚类 筛选最大最小距离 麻雀搜索算 数据集 车型信息数据
在线阅读 下载PDF
基于记忆传递旗鱼优化的K均值混合迭代聚类 被引量:5
13
作者 黄鹤 熊武 +3 位作者 吴琨 王会峰 茹锋 王珺 《上海交通大学学报》 EI CAS CSCD 北大核心 2022年第12期1638-1648,共11页
针对现有K均值聚类(KMC)算法受初始化影响较大,随机产生的聚类中心极易使聚类结果陷入局部最优而停止迭代,导致聚类精度低、鲁棒性差的问题,提出一种基于记忆传递旗鱼优化的K均值混合迭代聚类(MTSFO-HIKMC)算法.首先,借鉴已有改进思路,... 针对现有K均值聚类(KMC)算法受初始化影响较大,随机产生的聚类中心极易使聚类结果陷入局部最优而停止迭代,导致聚类精度低、鲁棒性差的问题,提出一种基于记忆传递旗鱼优化的K均值混合迭代聚类(MTSFO-HIKMC)算法.首先,借鉴已有改进思路,引入最大最小距离积来初始化KMC聚类中心,避免随机初始化带来的不确定性;同时,在迭代过程中,令当前最优解在局部进行自适应记忆传递修正,解决由于旗鱼算法搜索路径单一带来的全局寻优能力差和搜索精度不足的问题.利用Iris、Seeds、CMC和Wine国际标准数据集对MTSFO-HIKMC、旗鱼优化的K均值混合迭代聚类(SFO-KMC)算法、引入改进飞蛾扑火的K均值交叉迭代聚类(IMFO-KMC)算法、KMC算法和模糊C均值(FCM)算法进行比较测试,从得到的收敛曲线和性能指标可知,所提出的MTSFO-HIKMC算法相较于IMFO-KMC算法具有更快的收敛速度;在高维度空间较IMFO-KMC算法具有更高的搜索精度;相较于KMC和FCM算法具有更高的搜索精度;相比SFO-KMC算法在收敛速度和搜索精度方面都有明显提升,在高维数据集方面尤其明显. 展开更多
关键词 旗鱼算 自适应记忆传递修正策略 K均值聚类 最大最小距离 UCI标准数据集
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部