期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于最大散度差判别分析的一种目标识别方法 被引量:3
1
作者 张善文 李萍 +1 位作者 井荣枝 张云龙 《系统仿真学报》 CAS CSCD 北大核心 2013年第3期441-444,共4页
针对线性判别分析(LDA)在多类高维小样本模式的分类中存在的"小样本问题"和"次优性问题",提出了一种基于最大散度差判别准则的监督维数约简方法。首先,构造类内和类间离散度函数;然后采用最大散度差判别准则设计最... 针对线性判别分析(LDA)在多类高维小样本模式的分类中存在的"小样本问题"和"次优性问题",提出了一种基于最大散度差判别准则的监督维数约简方法。首先,构造类内和类间离散度函数;然后采用最大散度差判别准则设计最佳判别目标函数,得到映射矩阵和提取分类特征。该方法省略了求解逆矩阵过程,从而避免了传统的LDA存在的小样本问题;最后,在真实飞机图像数据库上的识别实验结果验证了该算法的有效性。 展开更多
关键词 飞机目标识别 线性判别分析 最大散度差判别分析 小样本问题
在线阅读 下载PDF
一种核最大散度差判别分析人脸识别方法 被引量:3
2
作者 杜海顺 李玉玲 +1 位作者 汪凤泉 张帆 《计算机科学》 CSCD 北大核心 2010年第6期286-288,302,共4页
提出一种有效的非线性子空间学习方法——核最大散度差判别分析(KMSD),并将其用于人脸识别。核最大散度差判别分析首先把输入空间的样本非线性映射到特征空间,然后通过核方法的技巧,采用最大散度差判别分析(MSD)方法在特征空间里求解。... 提出一种有效的非线性子空间学习方法——核最大散度差判别分析(KMSD),并将其用于人脸识别。核最大散度差判别分析首先把输入空间的样本非线性映射到特征空间,然后通过核方法的技巧,采用最大散度差判别分析(MSD)方法在特征空间里求解。在Yale和ORL人脸数据库上的实验结果表明,提出的核最大散度差判别分析方法用于人脸识别具有较高的识别率。 展开更多
关键词 最大散度差判别分析 子空间学习 人脸识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部