最大后验概率(maximum a posteriori,MAP)信道估计算法应用于MIMO-OFDM系统时将带来大规模矩阵求逆和乘积运算,且OFDM符号的数据传输效率随着发送天线的增多逐渐下降。针对这些弊端,提出一种基于期望最大化(expectation maximum,EM)的MA...最大后验概率(maximum a posteriori,MAP)信道估计算法应用于MIMO-OFDM系统时将带来大规模矩阵求逆和乘积运算,且OFDM符号的数据传输效率随着发送天线的增多逐渐下降。针对这些弊端,提出一种基于期望最大化(expectation maximum,EM)的MAP信道估计算法,并分析了算法的性能。该算法利用EM算法把多输入输出信道估计问题化简为一系列独立的单输入输出问题,避免了大规模矩阵运算,降低了MAP算法的计算复杂度;为进一步改善MAP算法的数据传输效率及其估计性能,可通过对多个连续的OFDM符号进行联合信道估计。通过仿真实验证明了该算法的有效性。展开更多
随着互联网的普及,信息能够通过互联网以极快的速度被传播给大众。但同时,一些虚假信息比如谣言也借助网络的级联效应泛滥成灾,因此如何在传播网络中快速准确地确定谣言传播源成为一个亟待解决的问题。文章针对社交网络提出了一种谣言...随着互联网的普及,信息能够通过互联网以极快的速度被传播给大众。但同时,一些虚假信息比如谣言也借助网络的级联效应泛滥成灾,因此如何在传播网络中快速准确地确定谣言传播源成为一个亟待解决的问题。文章针对社交网络提出了一种谣言源定位的方法,与现有的基于最大后验(Maximum-a-posteriori,MAP)概率估计的方法不同,该方法首先考虑全局和局部感染点、非感染点的影响,使用效果更优的MAP先验概率估计(Prior Probability Estimation,PPE)计算方式。然后基于最小生成树贪心算法来稀疏化社交网络,让MAP中的似然估计(Likelihood Estimation,LE)计算更符合真实的传播结构。最后,采用新的MAP值来估计传播网络中节点为传播源的可能性,从而更准确地定位谣言源点。将所提方法与现有的几种方法分别在模型网络和真实网络中进行了对比,实验结果表明,所提方法优于现有的谣言源定位方法。展开更多
文摘最大后验概率(maximum a posteriori,MAP)信道估计算法应用于MIMO-OFDM系统时将带来大规模矩阵求逆和乘积运算,且OFDM符号的数据传输效率随着发送天线的增多逐渐下降。针对这些弊端,提出一种基于期望最大化(expectation maximum,EM)的MAP信道估计算法,并分析了算法的性能。该算法利用EM算法把多输入输出信道估计问题化简为一系列独立的单输入输出问题,避免了大规模矩阵运算,降低了MAP算法的计算复杂度;为进一步改善MAP算法的数据传输效率及其估计性能,可通过对多个连续的OFDM符号进行联合信道估计。通过仿真实验证明了该算法的有效性。
文摘随着互联网的普及,信息能够通过互联网以极快的速度被传播给大众。但同时,一些虚假信息比如谣言也借助网络的级联效应泛滥成灾,因此如何在传播网络中快速准确地确定谣言传播源成为一个亟待解决的问题。文章针对社交网络提出了一种谣言源定位的方法,与现有的基于最大后验(Maximum-a-posteriori,MAP)概率估计的方法不同,该方法首先考虑全局和局部感染点、非感染点的影响,使用效果更优的MAP先验概率估计(Prior Probability Estimation,PPE)计算方式。然后基于最小生成树贪心算法来稀疏化社交网络,让MAP中的似然估计(Likelihood Estimation,LE)计算更符合真实的传播结构。最后,采用新的MAP值来估计传播网络中节点为传播源的可能性,从而更准确地定位谣言源点。将所提方法与现有的几种方法分别在模型网络和真实网络中进行了对比,实验结果表明,所提方法优于现有的谣言源定位方法。