期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于贝叶斯优化卷积神经网络的路面光伏阵列最大功率点电压预测方法 被引量:7
1
作者 毛明轩 冯心营 +1 位作者 陈思宇 王立宁 《中国电机工程学报》 EI CSCD 北大核心 2024年第2期620-630,I0015,共12页
路面光伏阵列上快速行驶的车辆,所形成的车辆阴影具有复杂的动态随机分布特性,将导致路面光伏阵列的输出功率-电压(P-V)特性曲线呈现动态多峰特性,给路面光伏阵列最大功率点跟踪(maximumpowerpointtracking,MPPT)控制带来挑战。基于此,... 路面光伏阵列上快速行驶的车辆,所形成的车辆阴影具有复杂的动态随机分布特性,将导致路面光伏阵列的输出功率-电压(P-V)特性曲线呈现动态多峰特性,给路面光伏阵列最大功率点跟踪(maximumpowerpointtracking,MPPT)控制带来挑战。基于此,文中提出一种基于贝叶斯优化(Bayesianoptimization,BO)卷积神经网络(convolutional neural network,CNN)的路面光伏阵列最大功率点电压预测方法。首先,将路面光伏阵列的光照和温度的环境信息以图像形式输入基于贝叶斯优化CNN的最大功率点电压预测模型进行学习;然后,利用训练出的预测模型,对当前时刻下路面光伏阵列最大功率点工作电压进行预测;最后,仿真和试验结果表明,提出的预测模型具有良好的适应性,能够精准预测不同车辆阴影工况下的路面光伏阵列最大功率点工作电压,尤其是大幅度提高最大功率点工作电压的预测速度,为动态随机车辆阴影下路面光伏阵列的最大功率点跟踪控制奠定基础。 展开更多
关键词 动态随机车辆阴影 路面光伏阵列 贝叶斯优化 卷积神经网络 图像信息 最大功率点电压预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部