针对强电磁干扰极易掩盖微弱的大地电磁有用信号,本文结合奇异值分解在去噪方面的优越性,提出基于自适应多分辨率奇异值分解(Adaptive Multi-Resolution Singular Value Decomposition,AMRSVD)的大地电磁数据处理方法.首先对大地电磁数...针对强电磁干扰极易掩盖微弱的大地电磁有用信号,本文结合奇异值分解在去噪方面的优越性,提出基于自适应多分辨率奇异值分解(Adaptive Multi-Resolution Singular Value Decomposition,AMRSVD)的大地电磁数据处理方法.首先对大地电磁数据构建Hankel矩阵,利用MRSVD得到不同分辨率的近似信号和细节信号;然后选用近似信号和细节信号的标准差差值,对大地电磁数据进行信噪辨识;接着结合MRSVD和相邻细节信号的标准差差值,提出先验信息未知情况下的AMRSVD法;最后对辨识出的强干扰运用AMRSVD去除噪声,重构有用信号.实验结果表明,该方法的处理效率高,能有效分离出相关性较强的噪声,时间序列和视电阻率-相位曲线均得到有效改善.展开更多
随着电网中电力电子装备渗透率的不断提高,电网谐振现象日益严重,严重影响电力设备正常工作和电力系统安全运行。针对现有模态频率灵敏度计算方法存在适用场景有限问题提出了基于奇异值分解(singular value decomposition,SVD)的电网谐...随着电网中电力电子装备渗透率的不断提高,电网谐振现象日益严重,严重影响电力设备正常工作和电力系统安全运行。针对现有模态频率灵敏度计算方法存在适用场景有限问题提出了基于奇异值分解(singular value decomposition,SVD)的电网谐振频率灵敏度分析方法。详细给出了该方法提出的依据和过程,采用非齐次公式求解关键变量表达式,避免了频率分辨率的影响,提高了计算精度,并有效克服了模态频率灵敏度不能分析支路电流谐振特点的不足。算例分析表明,在低频和中高频谐振两个案例下,所提方法能够分析网络元件参数对谐振频率的影响,并实现元件参数对谐振频率影响的量化。展开更多
针对大型矩阵奇异值分解(singular value decomposition,SVD)时使用经典算法时间复杂度较高,以及已有的量子SVD算法要求待分解的矩阵必须具有非稀疏低秩的性质,并且在计算过程中构造任意大小酉矩阵对目前的量子计算机来说实现起来并不...针对大型矩阵奇异值分解(singular value decomposition,SVD)时使用经典算法时间复杂度较高,以及已有的量子SVD算法要求待分解的矩阵必须具有非稀疏低秩的性质,并且在计算过程中构造任意大小酉矩阵对目前的量子计算机来说实现起来并不容易等问题,提出基于QR迭代的量子SVD。QR迭代使用的是Householder变换,通过量子矩阵乘法运算完成经典矩阵乘法运算过程。实验结果表明,该方法能够得到所求矩阵的奇异值及奇异矩阵,使大型矩阵的SVD具有可行性。展开更多
现有多视角聚类算法存在:1)在学习低维表征的过程中无法准确捕获或忽略嵌入在多视角数据中的高阶信息和互补信息;2)未能准确捕获数据局部信息;3)信息捕获方法缺少对噪声点鲁棒性等问题.为解决上述问题,提出一种自适应张量奇异值收缩的...现有多视角聚类算法存在:1)在学习低维表征的过程中无法准确捕获或忽略嵌入在多视角数据中的高阶信息和互补信息;2)未能准确捕获数据局部信息;3)信息捕获方法缺少对噪声点鲁棒性等问题.为解决上述问题,提出一种自适应张量奇异值收缩的多视角聚类(multi-view clustering based on adaptive tensor singular value shrinkage,ATSVS)算法.ATSVS首先提出一种符合秩特性的张量对数行列式函数对表示张量施加低秩约束,在张量奇异值分解(tensor singular value decomposition,t-SVD)过程中能够根据奇异值自身大小进行自适应收缩,更加准确地进行张量秩估计,进而从全局角度精准捕获多视角数据的高阶信息和互补信息.然后采用一种结合稀疏表示和流形正则技术优势的l_(1,2)范数捕获数据的局部信息,并结合l_(2,1)范数对噪声施加稀疏约束,提升算法对噪声点的鲁棒性.与11个对比算法在9个数据集上的实验结果显示,ATSVS的聚类性能均优于其他对比算法.因此,ATSVS是一个能够有效处理多视角数据聚类任务的优秀算法.展开更多
文摘针对强电磁干扰极易掩盖微弱的大地电磁有用信号,本文结合奇异值分解在去噪方面的优越性,提出基于自适应多分辨率奇异值分解(Adaptive Multi-Resolution Singular Value Decomposition,AMRSVD)的大地电磁数据处理方法.首先对大地电磁数据构建Hankel矩阵,利用MRSVD得到不同分辨率的近似信号和细节信号;然后选用近似信号和细节信号的标准差差值,对大地电磁数据进行信噪辨识;接着结合MRSVD和相邻细节信号的标准差差值,提出先验信息未知情况下的AMRSVD法;最后对辨识出的强干扰运用AMRSVD去除噪声,重构有用信号.实验结果表明,该方法的处理效率高,能有效分离出相关性较强的噪声,时间序列和视电阻率-相位曲线均得到有效改善.
文摘随着电网中电力电子装备渗透率的不断提高,电网谐振现象日益严重,严重影响电力设备正常工作和电力系统安全运行。针对现有模态频率灵敏度计算方法存在适用场景有限问题提出了基于奇异值分解(singular value decomposition,SVD)的电网谐振频率灵敏度分析方法。详细给出了该方法提出的依据和过程,采用非齐次公式求解关键变量表达式,避免了频率分辨率的影响,提高了计算精度,并有效克服了模态频率灵敏度不能分析支路电流谐振特点的不足。算例分析表明,在低频和中高频谐振两个案例下,所提方法能够分析网络元件参数对谐振频率的影响,并实现元件参数对谐振频率影响的量化。
文摘针对大型矩阵奇异值分解(singular value decomposition,SVD)时使用经典算法时间复杂度较高,以及已有的量子SVD算法要求待分解的矩阵必须具有非稀疏低秩的性质,并且在计算过程中构造任意大小酉矩阵对目前的量子计算机来说实现起来并不容易等问题,提出基于QR迭代的量子SVD。QR迭代使用的是Householder变换,通过量子矩阵乘法运算完成经典矩阵乘法运算过程。实验结果表明,该方法能够得到所求矩阵的奇异值及奇异矩阵,使大型矩阵的SVD具有可行性。
文摘现有多视角聚类算法存在:1)在学习低维表征的过程中无法准确捕获或忽略嵌入在多视角数据中的高阶信息和互补信息;2)未能准确捕获数据局部信息;3)信息捕获方法缺少对噪声点鲁棒性等问题.为解决上述问题,提出一种自适应张量奇异值收缩的多视角聚类(multi-view clustering based on adaptive tensor singular value shrinkage,ATSVS)算法.ATSVS首先提出一种符合秩特性的张量对数行列式函数对表示张量施加低秩约束,在张量奇异值分解(tensor singular value decomposition,t-SVD)过程中能够根据奇异值自身大小进行自适应收缩,更加准确地进行张量秩估计,进而从全局角度精准捕获多视角数据的高阶信息和互补信息.然后采用一种结合稀疏表示和流形正则技术优势的l_(1,2)范数捕获数据的局部信息,并结合l_(2,1)范数对噪声施加稀疏约束,提升算法对噪声点的鲁棒性.与11个对比算法在9个数据集上的实验结果显示,ATSVS的聚类性能均优于其他对比算法.因此,ATSVS是一个能够有效处理多视角数据聚类任务的优秀算法.