针对条带模式合成孔径雷达回波缺失数据,提出了一种利用压缩感知恢复缺失数据并成像的方法。将条带数据分块为多个子孔径数据,对子孔径利用压缩感知恢复缺失数据并拼接得到条带数据,缩短了整个数据的恢复时间,推导了压缩感知处理的基矩...针对条带模式合成孔径雷达回波缺失数据,提出了一种利用压缩感知恢复缺失数据并成像的方法。将条带数据分块为多个子孔径数据,对子孔径利用压缩感知恢复缺失数据并拼接得到条带数据,缩短了整个数据的恢复时间,推导了压缩感知处理的基矩阵和测量矩阵。运用最大似然估计的特征向量方法(eigenvector method for maximum likelihood estimation,EMMLE)实现了子孔径缺失数据的自聚焦,满足了压缩感知对图像的稀疏要求。利用压缩感知恢复完整的相位误差信号,解决了子孔径补偿相位误差数据的拼接问题。最后通过对恢复的雷达回波数据成像并自聚焦校正了距离徙动,得到了聚焦良好的完整图像,提高了缺失数据的成像质量。展开更多
To estimate the spreading sequence of the direct sequence spread spectrum (DSSS) signal, a fast algorithm based on maximum likelihood function is proposed, and the theoretical derivation of the algorithm is provided. ...To estimate the spreading sequence of the direct sequence spread spectrum (DSSS) signal, a fast algorithm based on maximum likelihood function is proposed, and the theoretical derivation of the algorithm is provided. By simplifying the objective function of maximum likelihood estimation, the algorithm can realize sequence synchronization and sequence estimation via adaptive iteration and sliding window. Since it avoids the correlation matrix computation, the algorithm significantly reduces the storage requirement and the computation complexity. Simulations show that it is a fast convergent algorithm, and can perform well in low signal to noise ratio (SNR).展开更多
文摘针对条带模式合成孔径雷达回波缺失数据,提出了一种利用压缩感知恢复缺失数据并成像的方法。将条带数据分块为多个子孔径数据,对子孔径利用压缩感知恢复缺失数据并拼接得到条带数据,缩短了整个数据的恢复时间,推导了压缩感知处理的基矩阵和测量矩阵。运用最大似然估计的特征向量方法(eigenvector method for maximum likelihood estimation,EMMLE)实现了子孔径缺失数据的自聚焦,满足了压缩感知对图像的稀疏要求。利用压缩感知恢复完整的相位误差信号,解决了子孔径补偿相位误差数据的拼接问题。最后通过对恢复的雷达回波数据成像并自聚焦校正了距离徙动,得到了聚焦良好的完整图像,提高了缺失数据的成像质量。
基金supported by Joint Foundation of and China Academy of Engineering Physical (10676006)
文摘To estimate the spreading sequence of the direct sequence spread spectrum (DSSS) signal, a fast algorithm based on maximum likelihood function is proposed, and the theoretical derivation of the algorithm is provided. By simplifying the objective function of maximum likelihood estimation, the algorithm can realize sequence synchronization and sequence estimation via adaptive iteration and sliding window. Since it avoids the correlation matrix computation, the algorithm significantly reduces the storage requirement and the computation complexity. Simulations show that it is a fast convergent algorithm, and can perform well in low signal to noise ratio (SNR).