为获得发电机励磁系统准确的模型参数,对BPA(bonneville power administration)软件中励磁系统典型仿真模型进行深入分析,得到模型参数与励磁系统大、小阶跃响应特性的关联关系。结合实际情况,对需辨识参数进行筛选,对参数取值范围进行...为获得发电机励磁系统准确的模型参数,对BPA(bonneville power administration)软件中励磁系统典型仿真模型进行深入分析,得到模型参数与励磁系统大、小阶跃响应特性的关联关系。结合实际情况,对需辨识参数进行筛选,对参数取值范围进行限制。采用最大-最小蚁群算法对参数进行辨识,先求得影响发电机空载电压小干扰阶跃响应特性的主要参数,再得到影响发电机空载电压大干扰阶跃响应特性的主要参数。BPA计算得到的辨识模型仿真曲线与实测数据吻合良好,仿真结果表明了辨识方法的有效性。展开更多
最大最小蚂蚁系统(Max-min Ant System,MMAS)是一种性能优良的启发式算法,常用于解决组合优化问题.当解决的目标问题规模较大、迭代轮次较多时,最大最小蚁群算法存在运行时间长的缺点.试验以开源串行包ACOTSP为基准,利用GPU多线程并发...最大最小蚂蚁系统(Max-min Ant System,MMAS)是一种性能优良的启发式算法,常用于解决组合优化问题.当解决的目标问题规模较大、迭代轮次较多时,最大最小蚁群算法存在运行时间长的缺点.试验以开源串行包ACOTSP为基准,利用GPU多线程并发的优势,采用并行蚂蚁策略将MMAS在CPU-GPU协同异构计算平台上并发实现.算法在GPU上运行时的影响因素,如数据传输、内存层次、库函数调用等,也得到有效分析,并作出针对性优化.试验最终取得了高达13倍的加速,表明并行MMAS策略具有高效性和实用性.展开更多
研究了工件带到达时间的目标为极小最大完工时间(C_(max))的单机批调度问题,采用最大-最小蚂蚁系统(max-min ant system,MMAS)进行求解。针对问题带到达时间以及分批的特性,提出了两种候选列表(candidate list)构建批序列,有效地缩小了...研究了工件带到达时间的目标为极小最大完工时间(C_(max))的单机批调度问题,采用最大-最小蚂蚁系统(max-min ant system,MMAS)进行求解。针对问题带到达时间以及分批的特性,提出了两种候选列表(candidate list)构建批序列,有效地缩小了搜索空间的维度;考虑两种候选列表的工件对构造解具有不同的影响,针对不同的候选列表设计了相应的启发式信息.仿真实验部分从求解质量和时间性能两方面比较了本文提出的算法和标准的蚂蚁系统(ant system,AS)算法以及使用不同候选列表的MMAS算法.结果表明,本文的算法在质量和时间两方面均全面优于标准的AS算法,而提出的候选列表使得该算法在大幅度提高时间性能的同时,仍然能够取得近似最优解,从而在求解质量和时间性能两方面取得平衡.展开更多
文摘为获得发电机励磁系统准确的模型参数,对BPA(bonneville power administration)软件中励磁系统典型仿真模型进行深入分析,得到模型参数与励磁系统大、小阶跃响应特性的关联关系。结合实际情况,对需辨识参数进行筛选,对参数取值范围进行限制。采用最大-最小蚁群算法对参数进行辨识,先求得影响发电机空载电压小干扰阶跃响应特性的主要参数,再得到影响发电机空载电压大干扰阶跃响应特性的主要参数。BPA计算得到的辨识模型仿真曲线与实测数据吻合良好,仿真结果表明了辨识方法的有效性。
文摘最大最小蚂蚁系统(Max-min Ant System,MMAS)是一种性能优良的启发式算法,常用于解决组合优化问题.当解决的目标问题规模较大、迭代轮次较多时,最大最小蚁群算法存在运行时间长的缺点.试验以开源串行包ACOTSP为基准,利用GPU多线程并发的优势,采用并行蚂蚁策略将MMAS在CPU-GPU协同异构计算平台上并发实现.算法在GPU上运行时的影响因素,如数据传输、内存层次、库函数调用等,也得到有效分析,并作出针对性优化.试验最终取得了高达13倍的加速,表明并行MMAS策略具有高效性和实用性.
文摘研究了工件带到达时间的目标为极小最大完工时间(C_(max))的单机批调度问题,采用最大-最小蚂蚁系统(max-min ant system,MMAS)进行求解。针对问题带到达时间以及分批的特性,提出了两种候选列表(candidate list)构建批序列,有效地缩小了搜索空间的维度;考虑两种候选列表的工件对构造解具有不同的影响,针对不同的候选列表设计了相应的启发式信息.仿真实验部分从求解质量和时间性能两方面比较了本文提出的算法和标准的蚂蚁系统(ant system,AS)算法以及使用不同候选列表的MMAS算法.结果表明,本文的算法在质量和时间两方面均全面优于标准的AS算法,而提出的候选列表使得该算法在大幅度提高时间性能的同时,仍然能够取得近似最优解,从而在求解质量和时间性能两方面取得平衡.