期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于最佳几何约束和RANSAC的特征匹配算法 被引量:10
1
作者 宁小娟 李洁茹 +1 位作者 高凡 王映辉 《系统仿真学报》 CAS CSCD 北大核心 2022年第4期727-734,共8页
为解决特征点匹配的质量与计算效率不能兼得的问题,研究了一种基于最佳几何约束和RANSAC(random sample consensus)的特征点匹配方法。采用KNN(k-nearest neighbor)算法对提取到的特征点完成初始匹配,根据匹配点对连接线长度相等、斜率... 为解决特征点匹配的质量与计算效率不能兼得的问题,研究了一种基于最佳几何约束和RANSAC(random sample consensus)的特征点匹配方法。采用KNN(k-nearest neighbor)算法对提取到的特征点完成初始匹配,根据匹配点对连接线长度相等、斜率相同的特点,基于统计排序策略构建最佳几何约束,剔除明显错误匹配。利用RANSAC算法进行二次过滤,确保特征匹配点对的正确率,同时给出实验结果加以验证。结果表明:在正常光照下,与Lowe’s算法和GMS算法相比,该算法匹配到的点对数有了明显增加,同时很大程度上保证了特征点的质量。 展开更多
关键词 统计排序 最佳几何约束 RANSAC(random sample consensus)算法 特征点匹配
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部