期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于最优重构健康因子和RIME-SVR的锂电池健康状态估计研究
1
作者
杨东晓
王贺
+2 位作者
党宏宇
袁宇轩
和杰公
《电子测量与仪器学报》
北大核心
2025年第5期188-196,共9页
为提高锂电池健康状态(SOH)估计精度,提出一种基于最优重构健康因子和霜冰算法优化支持向量回归(RIME-SVR)相融合的估计方法。首先从锂电池充放电过程提取3个可测量健康因子,利用Pearson法分析验证其与SOH相关性;其次利用完备集合经验...
为提高锂电池健康状态(SOH)估计精度,提出一种基于最优重构健康因子和霜冰算法优化支持向量回归(RIME-SVR)相融合的估计方法。首先从锂电池充放电过程提取3个可测量健康因子,利用Pearson法分析验证其与SOH相关性;其次利用完备集合经验模态分解算法(CEEMDAN)对健康因子分解重构,通过实验验证法确定最优重构方式,有效降低数据噪声和容量回升现象对SOH估计干扰;最后搭建基于RIME算法优化的SVR估计模型。实验采用NASA电池退化数据,结果表明,相比于粒子群(PSO)和人工蜂群(ABC)优化算法,RIME优化SVR参数时表现出更快收敛速度和更强全局搜索能力,显著提升模型性能。此外,基于最优重构健康因子和RIME-SVR的锂电池SOH估计模型3项指标均优于对比实验中其他模型,具有更高的估计精度和拟合度。使用最优重构健康因子Dtv_1+Ti_1+Tdv_1作为输入,模型平均绝对误差(MAE)、均方根误差(RMSE)分别低于0.37和0.55、R~2高于0.92,表明所提方法具备良好的普适性和鲁棒性。
展开更多
关键词
锂电池
健康
状况
最优重构健康因子
霜冰
优
化算法
支持向量回归
CEEMDAN
在线阅读
下载PDF
职称材料
题名
基于最优重构健康因子和RIME-SVR的锂电池健康状态估计研究
1
作者
杨东晓
王贺
党宏宇
袁宇轩
和杰公
机构
北京林业大学工学院
出处
《电子测量与仪器学报》
北大核心
2025年第5期188-196,共9页
基金
中央高校基本业务费(BLX201405)项目资助。
文摘
为提高锂电池健康状态(SOH)估计精度,提出一种基于最优重构健康因子和霜冰算法优化支持向量回归(RIME-SVR)相融合的估计方法。首先从锂电池充放电过程提取3个可测量健康因子,利用Pearson法分析验证其与SOH相关性;其次利用完备集合经验模态分解算法(CEEMDAN)对健康因子分解重构,通过实验验证法确定最优重构方式,有效降低数据噪声和容量回升现象对SOH估计干扰;最后搭建基于RIME算法优化的SVR估计模型。实验采用NASA电池退化数据,结果表明,相比于粒子群(PSO)和人工蜂群(ABC)优化算法,RIME优化SVR参数时表现出更快收敛速度和更强全局搜索能力,显著提升模型性能。此外,基于最优重构健康因子和RIME-SVR的锂电池SOH估计模型3项指标均优于对比实验中其他模型,具有更高的估计精度和拟合度。使用最优重构健康因子Dtv_1+Ti_1+Tdv_1作为输入,模型平均绝对误差(MAE)、均方根误差(RMSE)分别低于0.37和0.55、R~2高于0.92,表明所提方法具备良好的普适性和鲁棒性。
关键词
锂电池
健康
状况
最优重构健康因子
霜冰
优
化算法
支持向量回归
CEEMDAN
Keywords
lithium battery health
optimal reconstruction of health factors
rime-ice algorithm
support vector regression
CEEMDAN
分类号
TN86 [电子电信—信息与通信工程]
TM912 [电气工程—电力电子与电力传动]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于最优重构健康因子和RIME-SVR的锂电池健康状态估计研究
杨东晓
王贺
党宏宇
袁宇轩
和杰公
《电子测量与仪器学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部