期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于最优采样函数的粒子滤波算法与贝叶斯估计 被引量:4
1
作者 占荣辉 辛勤 万建伟 《信号处理》 CSCD 北大核心 2008年第2期259-263,共5页
传统粒子滤波器(PF)直接根据状态演化方程产生新的粒子,由于没有考虑新近观测对状态估计的影响,这种滤波器性能较差,即便在粒子数目很大的情况也是如此。为此,本文提出一种基于序贯重要采样(SIS)的改进粒子滤波算法,该算法采用集成了新... 传统粒子滤波器(PF)直接根据状态演化方程产生新的粒子,由于没有考虑新近观测对状态估计的影响,这种滤波器性能较差,即便在粒子数目很大的情况也是如此。为此,本文提出一种基于序贯重要采样(SIS)的改进粒子滤波算法,该算法采用集成了新近观测量的最优采样(或重要密度)函数指导粒子的生成,使粒子权值的方差最小化,能有效减轻粒子退化问题;同时。在粒子重采样之后增加了马尔科夫链蒙特卡洛(MCMC)过程,消除了重采样引起的粒子贫化的负面影响,从而使粒子的多样性得以保持。对非线性系统的状态估计和只测角跟踪的仿真实例均表明,本文所提出的算法比传统估计算法如EKF,UKF具有更高的精度和更强的鲁棒性;与标准PF相比,其性能也有较大的提高,并可以在相同的估计精度下大大减少所需的粒子数目,是一种有效的非线性滤波算法。 展开更多
关键词 粒子滤波器 最优采样函数 非线性滤波 状态估计 马尔科夫链蒙特卡洛
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部