考虑线性模型 Y=Xβ+ε,Y 是可观察的 n 维向量,ε和β是不可观察的 n 维和 p 维随机向量;E(β)=Aα,VAR(β)=σ~2△≥0;E(ε)=0,VAR(ε)=σ~2V≥0;E(εβ')=0;X,A,△,V 皆为已知矩阵;α∈R^k,σ>0皆为未知参数,本文首次提出矩阵损...考虑线性模型 Y=Xβ+ε,Y 是可观察的 n 维向量,ε和β是不可观察的 n 维和 p 维随机向量;E(β)=Aα,VAR(β)=σ~2△≥0;E(ε)=0,VAR(ε)=σ~2V≥0;E(εβ')=0;X,A,△,V 皆为已知矩阵;α∈R^k,σ>0皆为未知参数,本文首次提出矩阵损失函数,并给出了(Sα,Qβ)的估计(L_1Y+α,L_2Y+b)在非齐次估计类中可容许的充要条件。展开更多
雷达机动目标跟踪问题中,通常目标运动模型可精确地在直角坐标系下建模,但大多数情形下模型是非线性的,同时在传感器坐标系下所获得目标量测又是直接可用的.通过将无迹变换与最优线性无偏滤波器有机结合,提出一种新的BLUE(Best Linear U...雷达机动目标跟踪问题中,通常目标运动模型可精确地在直角坐标系下建模,但大多数情形下模型是非线性的,同时在传感器坐标系下所获得目标量测又是直接可用的.通过将无迹变换与最优线性无偏滤波器有机结合,提出一种新的BLUE(Best Linear Unbiased Estimator)滤波算法,以便解决上述非线性跟踪问题.首先,该算法利用无迹变换对经由直角坐标系下非线性目标运动模型得到的目标状态及其协方差作出预测,然后在保持传感器坐标系(极坐标系)下所固有的量测误差的同时,直接对它们作出状态估计.在算法推导及Monte-Carlo仿真过程中,将新的BLUE滤波算法和EKF(Extended Kalman Filter)、UKF(Unscented Kalman Filter)滤波算法进行比较,结果表明新算法的有效性和适用性.展开更多
In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias es...In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment.展开更多
文摘考虑线性模型 Y=Xβ+ε,Y 是可观察的 n 维向量,ε和β是不可观察的 n 维和 p 维随机向量;E(β)=Aα,VAR(β)=σ~2△≥0;E(ε)=0,VAR(ε)=σ~2V≥0;E(εβ')=0;X,A,△,V 皆为已知矩阵;α∈R^k,σ>0皆为未知参数,本文首次提出矩阵损失函数,并给出了(Sα,Qβ)的估计(L_1Y+α,L_2Y+b)在非齐次估计类中可容许的充要条件。
文摘In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment.
文摘针对基于谐波特征分析的时间调制阵列(time-modulated array,TMA)测向技术中信息利用率低的问题,提出了一种基于信号频谱特征分析的多谐波TMA测向方法.通过分析接收信号的频谱特征,构建了基于信号频谱特征多谐波测向模型,推导了基于频谱特征的来波方向最优线性无偏估计(best linear unbiased estimation,BLUE)表达式,从而提高了测向精度及稳定性.以BPSK信号为例,通过仿真实验验证了所提算法的有效性,同时搭建了工作于S频段的二单元TMA测向系统证实了所提方法的可行性.