期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
线性规划非最优约束方程判别定理研究 被引量:4
1
作者 高引民 甘仞初 吴立志 《太原理工大学学报》 CAS 2004年第3期371-374,共4页
以区分非最优约束条件和最优约束条件的特性为主线,利用线性规划、线性代数等理论进行分析和推导,从理论上获得了非最优约束条件一些性质及识别非最优约束条件的定理。在求解大规模解线性规划问题时,可以利用所得到的结论构造新的求解方... 以区分非最优约束条件和最优约束条件的特性为主线,利用线性规划、线性代数等理论进行分析和推导,从理论上获得了非最优约束条件一些性质及识别非最优约束条件的定理。在求解大规模解线性规划问题时,可以利用所得到的结论构造新的求解方法,以在求解的过程中获得变量有关的信息来识别非最优约束条件,并及时删除它,使得模型逐步降阶,以提高求解效率。 展开更多
关键词 线性规划 最优 约束条件 最优约束条件
在线阅读 下载PDF
A splicing algorithm for best subset selection in sliced inverse regression
2
作者 Borui Tang Jin Zhu +1 位作者 Tingyin Wang Junxian Zhu 《中国科学技术大学学报》 北大核心 2025年第5期22-34,21,I0001,共15页
In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by re... In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by replacing them with a minimally adequate collection of their linear combinations without loss of information.Recently,regularization methods have been proposed in SIR to incorporate a sparse structure of predictors for better interpretability.However,existing methods consider convex relaxation to bypass the sparsity constraint,which may not lead to the best subset,and particularly tends to include irrelevant variables when predictors are correlated.In this study,we approach sparse SIR as a nonconvex optimization problem and directly tackle the sparsity constraint by establishing the optimal conditions and iteratively solving them by means of the splicing technique.Without employing convex relaxation on the sparsity constraint and the orthogonal constraint,our algorithm exhibits superior empirical merits,as evidenced by extensive numerical studies.Computationally,our algorithm is much faster than the relaxed approach for the natural sparse SIR estimator.Statistically,our algorithm surpasses existing methods in terms of accuracy for central subspace estimation and best subset selection and sustains high performance even with correlated predictors. 展开更多
关键词 splicing technique best subset selection sliced inverse regression nonconvex optimization sparsity constraint optimal conditions
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部