期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于最优密度估计的密度峰值聚类算法 被引量:2
1
作者 覃华 刘政 苏一丹 《计算机工程与设计》 北大核心 2020年第7期1877-1883,共7页
针对密度峰值聚类算法(clustering by fast search and find of density peaks,DPC)聚类无特定形状的实际数据集时聚类精度欠佳的问题,提出一种最优化密度估计的密度峰聚值类算法。使用最优Oracle逼近(Oracle approximating shrinkage,... 针对密度峰值聚类算法(clustering by fast search and find of density peaks,DPC)聚类无特定形状的实际数据集时聚类精度欠佳的问题,提出一种最优化密度估计的密度峰聚值类算法。使用最优Oracle逼近(Oracle approximating shrinkage,AS)计算出最优协方差矩阵,利用最优协方差矩阵构造马氏距离,通过最优协方差矩阵提高DPC对数据相似度的区分能力,在此基础上结合K近邻算法,实现数据样本密度最优估计,利用最优密度估计提高DPC对实际数据集的聚类精度。在人工数据集和UCI真实数据集上进行仿真实验,实验结果表明,改进DPC算法的思路是可行的。 展开更多
关键词 密度峰值聚类算法 K近邻 协方差矩阵 最优Oracle估计 最优密度估计
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部