期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于变分模态分解和深度学习算法的污水出水水质预测
1
作者 梅丹 张恒 《长江科学院院报》 北大核心 2025年第9期67-74,82,共9页
准确预测出水水质对于污水处理厂的节能降耗具有重要意义。近年来,以废水处理仿真基准模型1号(BSM1)为代表的机理模型和各种深度学习算法被广泛运用于污水处理厂出水水质预测。然而,出水水质具有复杂的非线性关系,现有的预测模型通用性... 准确预测出水水质对于污水处理厂的节能降耗具有重要意义。近年来,以废水处理仿真基准模型1号(BSM1)为代表的机理模型和各种深度学习算法被广泛运用于污水处理厂出水水质预测。然而,出水水质具有复杂的非线性关系,现有的预测模型通用性较差。基于此,提出一种基于变分模态分解(VMD)和4种深度学习算法的预测框架。通过变分模态分解方法将水质序列分解后,引入综合评价指标(CEI)为分解后的子序列寻求预测性能最好的算法,最后叠加各子模型的预测值得到最终的预测结果。以湖北省武汉市的一座污水处理厂出水化学需氧量(COD)浓度为例进行实例验证,结果表明,所提出的模型较单一模型在预测性能上达到了最佳效果,均方根误差(RMSE)达到了0.485。 展开更多
关键词 水质预测 变分模态分解 综合评价指标 最优子模型选择 深度学习算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部