期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于最优变分模态分解的渭河流域多步径流预报 被引量:6
1
作者 邱绪迪 王坤 +2 位作者 陈飞 相里宇锡 王斌 《人民长江》 北大核心 2024年第8期79-86,95,共9页
针对渭河流域月径流序列的非平稳性日益加剧而难以对其进行精准预测的问题,提出了一种基于最优变分模态分解(OVMD)、随机配置网络(SCN)和递归多步预测策略的月径流序列多步预测模型。首先,利用OVMD将径流数据投影到不同频率的子序列中;... 针对渭河流域月径流序列的非平稳性日益加剧而难以对其进行精准预测的问题,提出了一种基于最优变分模态分解(OVMD)、随机配置网络(SCN)和递归多步预测策略的月径流序列多步预测模型。首先,利用OVMD将径流数据投影到不同频率的子序列中;然后通过SCN对每个分解部分进行预测,叠加得到单步预测结果;最后通过递归多步预测方法对未来较长时间的径流数据进行预测,得到多步预测结果。选取渭河流域华县水文站和咸阳水文站1970~2019年的实测月径流时间序列进行实例分析,并与其他常用模型进行对比,选取均方根误差RMSE、平均绝对误差MAE、平均绝对百分比误差MAPE以及纳什效率系数NSE对预测结果进行评价。研究结果表明:在华县水文站和咸阳水文站的单步预测试验中,OVMD-SCN模型的NSE分别达98.15%和98.52%,显著高于其他流行模型;在两个水文站的多步预测试验中,OVMD-SCN的各项评价指标均优于其他流行模型,表明所提方法可以精准预测5个月后的径流量。研究成果可为渭河流域的月径流精准预测提供技术支持。 展开更多
关键词 径流预报 最优变分模态分解 随机配置网络 递归多步预测 渭河流域
在线阅读 下载PDF
基于混合变分模态分解模型的短期风速预测 被引量:2
2
作者 吴小涛 袁晓辉 +1 位作者 袁艳斌 张东寅 《水电能源科学》 北大核心 2019年第1期195-198,共4页
针对风速时间序列不稳定导致其难以准确预测的问题,提出一种基于最优变分模态分解(OVMD)和蝙蝠算法(BA)优化最小二乘支持向量机(LSSVM)的短期风速预测模型。采用OVMD技术,将原始风速时间序列先分解为若干个相对稳定的分量序列,然后对各... 针对风速时间序列不稳定导致其难以准确预测的问题,提出一种基于最优变分模态分解(OVMD)和蝙蝠算法(BA)优化最小二乘支持向量机(LSSVM)的短期风速预测模型。采用OVMD技术,将原始风速时间序列先分解为若干个相对稳定的分量序列,然后对各个分量分别建立LSSVM模型进行预测,并采用蝙蝠算法优化LSSVM中的参数,最后对优化的分量预测模型的预测值求和,即得到原始风速序列的预测值。算例分析表明,该模型具有较高的预测精度,能有效跟踪风速的变化规律。研究成果为短期风速预测提供了新思路。 展开更多
关键词 风速预测 最优变分模态分解 蝙蝠算法 最小二乘支持向量机
在线阅读 下载PDF
基于能量熵VMD最优分解与GRU循环神经网络的潮汐预测精度提升方法研究 被引量:10
3
作者 赵杰 解则晓 刘世萱 《仪器仪表学报》 EI CAS CSCD 北大核心 2023年第12期79-87,共9页
为进一步提升潮汐预测精度,提高预测模型的多适应性,针对低频潮汐分潮智能化自适应提取困难、动态化处理分潮信息能力弱、单一预测模型对潮汐整体预测的局限性等问题,提出了一种基于能量熵的自适应最优变分模态分解VMD与门控循环单元神... 为进一步提升潮汐预测精度,提高预测模型的多适应性,针对低频潮汐分潮智能化自适应提取困难、动态化处理分潮信息能力弱、单一预测模型对潮汐整体预测的局限性等问题,提出了一种基于能量熵的自适应最优变分模态分解VMD与门控循环单元神经网络GRU相结合的潮汐预测提升方法。首先,将潮汐数据归一化预处理,通过VMD对潮汐数据完成自适应变分模态分解,并根据不同分解层模态分量的能量熵判定最优分解层数,最后将最优分量标准化后经GRU单独预测合成,通过反归一化形成最终预测数据。经验证分析,在潮汐预测方面,GRU模型比LSTM、BiLSTM模型性能更优,均方根误差分别提升了53%和96.8%,而本文方法与单一GRU模型相比,均方根误差再次提升了81.3%,预测精度提升效果更加明显,对于潮汐分析与预测具有较高的推广应用价值。 展开更多
关键词 潮汐预测 自适应最优变分模态分解 能量熵 门控循环单元
在线阅读 下载PDF
基于OVMD-HWOA-KELM模型的变压器油中溶解气体体积分数预测方法 被引量:5
4
作者 谢明浩 张林鍹 +1 位作者 董小刚 许晋闻 《高电压技术》 EI CAS CSCD 北大核心 2024年第8期3793-3804,I0037,I0038,I0039,共15页
针对变压器油中溶解气体序列波动性、随机性较强难以精确预测的问题,提出一种基于最优变分模态分解(optimal variational mode decomposition,OVMD)、混合型鲸鱼优化算法(hybrid whale optimization algorithm,HWOA)和核极限学习机(kern... 针对变压器油中溶解气体序列波动性、随机性较强难以精确预测的问题,提出一种基于最优变分模态分解(optimal variational mode decomposition,OVMD)、混合型鲸鱼优化算法(hybrid whale optimization algorithm,HWOA)和核极限学习机(kernel extreme learning machine,KELM)的组合预测模型。首先,运用OVMD获取最优分解参数,并将原始序列分解为一系列相对平稳的分量;其次,通过在鲸鱼种群中融入混沌映射、非线性收敛参数、自适应权重因子和改进的算术优化算法提出HWOA算法,并利用测试函数验证HWOA算法的优越性;然后,对各分量分别构建KELM预测模型,使用HWOA优化KELM的关键参数。最后,将各分量的预测结果叠加重构,得到最终预测结果。案例分析表明,所提模型对变压器正常和异常案例预测的决定系数分别可达97.7%和93.46%,相较于现存方法,该模型具有更好的准确性和适应性,可为电力变压器运维管理提供有利技术支撑。 展开更多
关键词 油中溶解气体 最优变分模态分解 融合型鲸鱼化算法 核极限学习机 压器状态预测
在线阅读 下载PDF
基于OVMD-TVFEMD二次分解和HPO-ELM的水电机组振动趋势预测 被引量:4
5
作者 张楠 朱永奇 +2 位作者 孙娜 赖昕杰 李超顺 《水电能源科学》 北大核心 2023年第10期204-207,199,共5页
针对已有水电机组振动趋势预测模型的局限性,提出了一种基于最优变分模态分解(OVMD)、时变滤波器经验模态分解(TVFEMD)、猎人猎物优化算法(HPO)和极限学习机(ELM)的水电机组振动趋势预测方法。该方法先通过OVMD对原始水电机组振动信号... 针对已有水电机组振动趋势预测模型的局限性,提出了一种基于最优变分模态分解(OVMD)、时变滤波器经验模态分解(TVFEMD)、猎人猎物优化算法(HPO)和极限学习机(ELM)的水电机组振动趋势预测方法。该方法先通过OVMD对原始水电机组振动信号进行自适应分解,进一步采用TVFEND对分解后的残差进行二次分解。然后建立各子序列的HPO-ELM振动趋势预测模型;叠加重构所有子序列预测结果获得最终的预测振动信号。研究结果表明,该方法预测效果明显优于传统方法,有效提高了水电机组振动趋势预测精度,具有较好的工程应用价值。 展开更多
关键词 水电机组振动趋势预测 最优变分模态分解 二次分解 极限学习机 化算法
在线阅读 下载PDF
基于OVMD与SVR的水电机组振动趋势预测 被引量:22
6
作者 付文龙 周建中 +1 位作者 张勇传 郑阳 《振动与冲击》 EI CSCD 北大核心 2016年第8期36-40,共5页
为更好地预测水电机组振动趋势,研究提出了一种基于最优变分模态分解(OVMD)与支持向量回归(SVR)的水电机组振动趋势预测模型。首先基于中心频率观察法与残差指标最小化准则确定OVMD的分解参数,采用OVMD将非平稳振动序列分解为一系列模... 为更好地预测水电机组振动趋势,研究提出了一种基于最优变分模态分解(OVMD)与支持向量回归(SVR)的水电机组振动趋势预测模型。首先基于中心频率观察法与残差指标最小化准则确定OVMD的分解参数,采用OVMD将非平稳振动序列分解为一系列模态函数,并对各模态函数分别进行相空间重构,构建状态矩阵,进而得到SVR回归预测模型的输入、输出,再采用交叉验证的网格搜索策略优化各SVR模型的参数,并分别进行回归预测,最后对所有SVR预测结果进行求和,得到原始振动趋势的预测值。研究对某大型混流式水电机组的振动监测数据进行预测试验,并进行对比分析,结果表明该模型可有效预测水电机组振动趋势。 展开更多
关键词 最优变分模态分解 相空间重构 支持向量回归 非平稳 振动趋势预测
在线阅读 下载PDF
基于OVMD-RFECV-PSO-XGBoost模型的大坝变形预测
7
作者 柯扬忠 程小龙 +2 位作者 程志良 刘陶胜 王丽丽 《三峡大学学报(自然科学版)》 2025年第5期19-25,共7页
针对大坝变形预测中存在的影响因素多、数据复杂度高和非线性问题,以及不同参数组合对预测精度的显著影响,本文提出了一种融合最优变分模态分解(OVMD)、递归特征消除及交叉验证(RFECV)、粒子群优化算法(PSO)和极限梯度提升算法(XGBoost... 针对大坝变形预测中存在的影响因素多、数据复杂度高和非线性问题,以及不同参数组合对预测精度的显著影响,本文提出了一种融合最优变分模态分解(OVMD)、递归特征消除及交叉验证(RFECV)、粒子群优化算法(PSO)和极限梯度提升算法(XGBoost)的大坝变形预测模型.首先对大坝的变形数据进行OVMD分解,将原始数据分解成K个模态分量;其次,使用RFECV为每个模态分量进行最优特征子集筛选;最后使用PSO对XGBoost的参数进行优化,构建基于OVMD-RFECV-PSO-XGBoost的大坝变形预测模型;以中国江西省某大坝2009—2015年变形监测数据为例,对大坝的垂直沉降位移进行预测,设置不同对照组进行验证.实验结果表明,OVMD-RFECV-PSO-XGBoost预测模型的EMS为0.1411mm,EMAP为5.9455%,R2为0.9348,预测精度均优于其他对照模型. 展开更多
关键词 大坝形预测 最优变分模态分解 递归特征消除及交叉验证 粒子群化算法 极限梯度提升算法 机器学习
在线阅读 下载PDF
基于OVMD-SSA-DELM-GM模型的超短期风电功率预测方法 被引量:47
8
作者 曾亮 雷舒敏 +1 位作者 王珊珊 常雨芳 《电网技术》 EI CSCD 北大核心 2021年第12期4701-4710,共10页
为了提高风电功率的预测精度,提出了一种基于最优变分模态分解(optimal variational model decomposition,OVMD)、麻雀算法(sparrow search algorithm,SSA)、深度极限学习机(deep extreme learning machine,DELM)和灰色模型(grey model,... 为了提高风电功率的预测精度,提出了一种基于最优变分模态分解(optimal variational model decomposition,OVMD)、麻雀算法(sparrow search algorithm,SSA)、深度极限学习机(deep extreme learning machine,DELM)和灰色模型(grey model,GM)的超短期风电功率预测方法。该方法通过OVMD对原始风电功率时间序列进行自适应分解;然后针对各分量建立DELM预测模型并利用SSA算法进行参数寻优,并对各个分量的预测结果进行求和重构;利用GM对误差序列进行预测;最后将误差的预测值与原始风电功率的预测值叠加得到最终预测结果。对北方某风电场的风电功率数据进行仿真实验,结果表明,该方法预测效果明显优于传统方法,有效提高了超短期风电功率预测的精确性。 展开更多
关键词 超短期风电功率预测 最优变分模态分解 深度极限学习机 麻雀算法 灰色模型
在线阅读 下载PDF
OVMD与三维奇异谱特征融合的往复压缩机气阀故障识别方法 被引量:2
9
作者 刘岩 康丽 +1 位作者 苏庆勇 王金东 《机床与液压》 北大核心 2023年第9期226-232,共7页
针对往复压缩机气阀断裂型故障危害下故障振动波形的变异特点,为提高常见的气阀阀片失效后期断裂型故障的识别率,提出一种基于最优变分模态分解(OVMD)和三维奇异谱融合的诊断算法。通过VMD参数优化,利用多重分形去趋势波动分析(MFDFA)... 针对往复压缩机气阀断裂型故障危害下故障振动波形的变异特点,为提高常见的气阀阀片失效后期断裂型故障的识别率,提出一种基于最优变分模态分解(OVMD)和三维奇异谱融合的诊断算法。通过VMD参数优化,利用多重分形去趋势波动分析(MFDFA)提取模态分量的三维奇异谱参数分析,结合核主分量分析降维提取不同工况模态分量的特征值,并建立完整的OVMD_MFDFA融合诊断识别方案。模拟试验和算法对比证实,该法能有效提高环状气阀阀片断裂故障诊断效率和准确性。 展开更多
关键词 最优变分模态分解 多重形去趋势波动 三维奇异谱 往复压缩机 气阀故障
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部