期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
广义洛伦兹内核函数在模糊C均值聚类中的应用研究
1
作者 王建华 李晓峰 高巍巍 《计算机科学》 CSCD 北大核心 2015年第9期268-271,共4页
模糊C均值(FCM)算法是数据聚类分析的主要算法。但在嘈杂环境下,对于抽样大小不一的聚类,数目越多准确性越低,上述弊端可通过替代性FCM(AFCM)的高斯内核映射来解决。鉴于AFCM的不足,提出了针对模糊C均值聚类的广义洛伦兹内核函数。利用... 模糊C均值(FCM)算法是数据聚类分析的主要算法。但在嘈杂环境下,对于抽样大小不一的聚类,数目越多准确性越低,上述弊端可通过替代性FCM(AFCM)的高斯内核映射来解决。鉴于AFCM的不足,提出了针对模糊C均值聚类的广义洛伦兹内核函数。利用该算法对鸢尾数据库进行聚类,将其划分成山鸢尾、变色鸢尾和维吉尼亚鸢尾3类。实验结果表明,广义洛伦兹模糊C均值(GLFCM)可实现对离群聚类和大小不等的聚类数据的分类,其结果优于K均值、FCM、替代性C均值(AFCM)、Gustafson-Kessel(GK)和Gath-Geva(GG)方法,收敛迭代次数比AFCM的更少,其分区索引(SC)效果也好于其他方法。 展开更多
关键词 广义洛伦兹隶属函数 K均值 替代性模糊c均值 聚类 离群聚类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部