期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
基于更快区域卷积神经网络的多视角船舶识别 被引量:5
1
作者 程静 王荣杰 +2 位作者 曾光淼 林安辉 王亦春 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2023年第10期1832-1840,共9页
针对在复杂海洋环境下采集船舶多视角图像难度大、不同视角下船舶外观差异显著的问题,本文以自制的不同类型的多艘船舶的多视角图像为数据集训练更快区域卷积神经网络模型,利用平均F1分数、平均精度和平均误检率作为评价指标评估更快区... 针对在复杂海洋环境下采集船舶多视角图像难度大、不同视角下船舶外观差异显著的问题,本文以自制的不同类型的多艘船舶的多视角图像为数据集训练更快区域卷积神经网络模型,利用平均F1分数、平均精度和平均误检率作为评价指标评估更快区域卷积神经网络模型对不同视角船舶的识别性能,并通过识别不同船舶的F1分数和误检率分析更快区域卷积神经网络对不同质量、背景图像的识别能力。实验结果表明,更快区域卷积神经网络识别多角度船舶的平均F1分数为0.6969,平均精度为92.88%,平均误检率为8.34%,即更快区域卷积神经网络对多视角船舶有较高的识别能力,但对于有雾或昏暗环境下的低像素图像识别能力明显下降。 展开更多
关键词 多视角 船舶识别 视觉图像 更快区域卷积神经网络 目标检测 特征提取 深度学习 低分辨率图像
在线阅读 下载PDF
基于生成对抗网络改进的更快速区域卷积神经网络交通标志检测 被引量:4
2
作者 高忠文 于立国 《汽车技术》 CSCD 北大核心 2020年第7期14-18,共5页
针对小尺寸、远距离的交通标志检测过程中缺少信息的问题,以改进的更快速区域卷积神经网络(Faster R-CNN)检测器为基础,结合生成对抗网络(GAN)的目标检测算法实现对小目标交通标志的检测。Faster R-CNN首先根据期望目标设定合适的锚点数... 针对小尺寸、远距离的交通标志检测过程中缺少信息的问题,以改进的更快速区域卷积神经网络(Faster R-CNN)检测器为基础,结合生成对抗网络(GAN)的目标检测算法实现对小目标交通标志的检测。Faster R-CNN首先根据期望目标设定合适的锚点数量,生成包含小目标的候选区域,再使用生成网络对候选区域中的模糊小目标进行上采样,生成高分辨率图像,最后使用分类损失函数与回归损失函数对判别网络进行改进。试验结果表明,Faster R-CNN和生成对抗网络相结合的检测算法可以提高远距离小目标交通标志检测性能。 展开更多
关键词 交通标志检测 区域卷积神经网络 生成对抗网络 超分辨重建
在线阅读 下载PDF
基于改进的更快的卷积神经网络特征区域的淡水鱼鱼鳃切口点定位
3
作者 王红君 时扬扬 +1 位作者 岳有军 赵辉 《科学技术与工程》 北大核心 2021年第16期6794-6800,共7页
为了提高鱼产品加工过程中鱼鳃切口点定位的准确度,采用改进的更快的卷积神经网络特征区域(faster convolutional neural network feature region,Faster RCNN)对淡水鱼的鱼鳃部位进行检测和定位。首先,为了增强主干网络VGG16的特征提... 为了提高鱼产品加工过程中鱼鳃切口点定位的准确度,采用改进的更快的卷积神经网络特征区域(faster convolutional neural network feature region,Faster RCNN)对淡水鱼的鱼鳃部位进行检测和定位。首先,为了增强主干网络VGG16的特征提取能力,加入批归一化(batch normalization,BN)层对其进行结构优化,提高了网络识别的准确率。其次,当物体处于预设的交叉阈值范围时,非最大值抑制(non-maximum suppression,NMS)算法存在目标漏检的问题。采用Soft-NMS算法替代NMS算法,增强了目标检测的性能。通过在淡水鱼数据集进行的实验结果表明,改进的Faster RCNN网络对鱼鳃切口定位准确率达到了96%,较未改进网络提高了6%,为后续生产线中鱼鳃的精准切割奠定了基础。 展开更多
关键词 目标检测 鱼鳃切口定位 卷积神经网络特征区域(Faster RCNN) Soft-NMS
在线阅读 下载PDF
卷积神经网络模型剪枝结合张量分解压缩方法 被引量:9
4
作者 巩凯强 张春梅 曾光华 《计算机应用》 CSCD 北大核心 2020年第11期3146-3151,共6页
针对卷积神经网络(CNN)拥有巨大的参数量及计算量,限制了其在嵌入式系统等资源受限设备上应用的问题,提出了基于统计量的网络剪枝结合张量分解的神经网络压缩方法,其核心思想是以均值和方差作为评判权值贡献度的依据。首先,以Lenet5为... 针对卷积神经网络(CNN)拥有巨大的参数量及计算量,限制了其在嵌入式系统等资源受限设备上应用的问题,提出了基于统计量的网络剪枝结合张量分解的神经网络压缩方法,其核心思想是以均值和方差作为评判权值贡献度的依据。首先,以Lenet5为剪枝模型,网络各卷积层的均值和方差分布以聚类方式分离出提取特征较弱的滤波器,而使用保留的滤波器重构下一层卷积层;然后,将剪枝方法结合张量分解对更快的区域卷积神经网络(Faster RCNN)进行压缩,低维卷积层采取剪枝方法,而高维卷积层被分解为三个级联卷积层;最后,将压缩后的模型进行微调,使其在训练集上重新达到收敛状态。在PASCAL VOC测试集上的实验结果表明,所提方法降低了Faster RCNN模型54%的存储空间而精确率仅下降了0.58%,同时在树莓派4B系统上达到1.4倍的前向计算加速,有助于深度CNN模型在资源受限的嵌入式设备上的部署。 展开更多
关键词 卷积神经网络 目标检测 区域卷积神经网络 剪枝 张量分解
在线阅读 下载PDF
基于深度卷积神经网络的舰载机目标检测 被引量:7
5
作者 朱兴动 田少兵 +3 位作者 黄葵 范加利 王正 陈化成 《计算机应用》 CSCD 北大核心 2020年第5期1529-1533,共5页
针对航母甲板面舰载机密集易遮挡,舰载机目标难以检测,且检测效果易受光照条件和目标尺度影响的问题,提出了一种改进的更快的区域卷积神经网络(Faster R-CNN)舰载机目标检测方法。该方法设计了带排斥损失策略的损失函数,并结合多尺度训... 针对航母甲板面舰载机密集易遮挡,舰载机目标难以检测,且检测效果易受光照条件和目标尺度影响的问题,提出了一种改进的更快的区域卷积神经网络(Faster R-CNN)舰载机目标检测方法。该方法设计了带排斥损失策略的损失函数,并结合多尺度训练,利用实验室条件下采集的图片对深度卷积神经网络进行训练并测试。测试实验显示,相对于原始Faster R-CNN检测模型,改进后的模型对遮挡舰载机目标具有良好的检测效果,召回率提高了7个百分点,精确率提高了6个百分点。实验结果表明,所提的改进方法能够自动全面地提取舰载机目标特征,解决了遮挡舰载机目标的检测问题,检测精度和速度均能够满足实际需要,且在不同的光照条件和目标尺度下适应性强,鲁棒性较高。 展开更多
关键词 舰载机目标检测 排斥损失策略 区域卷积神经网络 多尺度训练
在线阅读 下载PDF
基于改进的Faster RCNN的仪表自动识别方法 被引量:4
6
作者 王欣然 张斌 +1 位作者 湛敏 赵成龙 《机电工程》 CAS 北大核心 2024年第3期532-539,共8页
在环境复杂的工业场景中,仪表盘存在类别多、相似性高等问题,导致检测的识别效果较差、准确率不高。针对这一问题,提出了一种基于改进的更快速的区域卷积神经网络(Faster RCNN)的仪表自动识别方法。首先,采用残差网络(Resnet)101代替视... 在环境复杂的工业场景中,仪表盘存在类别多、相似性高等问题,导致检测的识别效果较差、准确率不高。针对这一问题,提出了一种基于改进的更快速的区域卷积神经网络(Faster RCNN)的仪表自动识别方法。首先,采用残差网络(Resnet)101代替视觉几何群网络(VGG)16,进行了网络结构简化;然后,引入了特征金字塔网络(FPN),并将其改进为递归特征金字塔网络后进行了迭代融合,输出了特征图;接着,引入了注意力机制模块,根据特征的重要程度,完成了对输出通道权值的重新分配,增强了Faster RCNN对目标的运算能力;提出了改进非极大值抑制算法(Softer-NMS),通过降低置信度来确定准确的目标候选框;最后,采用Mosaic数据增强技术对可视对象类(VOC)2007数据集进行了扩充,对改进后的Faster RCNN模型进行了仪表自动识别的实验。研究结果表明:在相同工业环境下,与传统的Faster RCNN算法模型相比,改进后的Faster RCNN模型准确率为93.5%,较原模型提高了3.8%,mAP值为92.6%,较原模型提高了3.7%,可见该方法在实际生产中具有较强的鲁棒性与泛化能力,可满足工业上对智能检测的要求。 展开更多
关键词 仪表识别 速的区域卷积神经网络 递归特征金字塔网络 注意力机制 非极大值抑制算法 Mosaic数据增强技术
在线阅读 下载PDF
基于改进深度学习的航拍滑坡检测方法
7
作者 杨靛青 毛艳萍 《计算机工程与设计》 北大核心 2024年第1期268-274,共7页
为及时发现滑坡险情展开应急救援,提出一种结合逐通道不同阈值的深度残差收缩网络(DRSN-CW)方法的更快速区域卷积神经网络(Faster-RCNN)模型的航拍图像滑坡检测算法。利用图像增强的伽马变换、高斯滤波方法提高图片的质量;使用群组归一... 为及时发现滑坡险情展开应急救援,提出一种结合逐通道不同阈值的深度残差收缩网络(DRSN-CW)方法的更快速区域卷积神经网络(Faster-RCNN)模型的航拍图像滑坡检测算法。利用图像增强的伽马变换、高斯滤波方法提高图片的质量;使用群组归一化方法消除batchsize大小对模型的影响;为减少噪声以及无关特征区域的干扰,采用DRSN-CW网络对滑坡检测目标进行精准定位。实验结果表明,改进后模型与先前模型相比F1值以及平均精度分别增加了10.7%、10.2%,可以有效检测滑坡险情。 展开更多
关键词 区域卷积神经网络 滑坡检测 无人机航拍 伽马变换 高斯滤波 群组归一化方法 逐通道不同阈值的深度残差收缩网络
在线阅读 下载PDF
基于深度学习的肺炎图像目标检测 被引量:5
8
作者 何迪 刘立新 +3 位作者 刘玉杰 熊丰 齐美捷 张周锋 《中国生物医学工程学报》 CAS CSCD 北大核心 2022年第4期443-451,共9页
肺炎是一种严重危害身体健康的疾病,通常使用肺部X光片进行检查。肺炎诊断是肺炎治疗前非常重要的环节,但是由于肺部其他疾病的干扰、医疗数据的爆发式增长以及专业病理医生的缺乏等,导致肺炎的准确诊断较为困难。深度学习能够模仿人脑... 肺炎是一种严重危害身体健康的疾病,通常使用肺部X光片进行检查。肺炎诊断是肺炎治疗前非常重要的环节,但是由于肺部其他疾病的干扰、医疗数据的爆发式增长以及专业病理医生的缺乏等,导致肺炎的准确诊断较为困难。深度学习能够模仿人脑的机制准确高效地解释医学图像数据,在肺炎图像检测方面获得了广泛应用。构建了3种基于深度学习的图像目标检测模型,单发多框探测器(SSD)、faster-RCNN和faster-RCNN优化模型,对来自Kaggle数据集的26 684张带标签的肺部X光图像进行研究。原始X光图像经预处理后输入3种深度学习模型,分别对单处和两处病灶区域进行目标检测。随机选取500张测试图像,利用损失函数、分类准确率、回归精度和误检病灶数等指标对各模型的性能进行评估。结果表明,faster-RCNN的性能指标优于SSD;Faster-RCNN优化模型的性能指标均优于其他两种模型,其损失函数值小且可快速达到稳定,平均分类准确率为93.7%,平均回归精度为79.8%,且误检病灶数为0。该方法有助于肺炎的准确识别和诊断。 展开更多
关键词 目标检测 肺炎图像 深度学习 区域卷积神经网络(faster-RCNN)模型 单发多框探测器(SSD)模型
在线阅读 下载PDF
基于Faster R-CNN的人体行为检测研究 被引量:19
9
作者 莫宏伟 汪海波 《智能系统学报》 CSCD 北大核心 2018年第6期967-973,共7页
由于人体行为类内差异大,类间相似性大,而且还存在视觉角度与遮挡等问题,使用人工提取特征的方法特征提取难度大并且难以提取有效特征,使得人体行为检测率较低。针对这个问题,本文在物体检测的基础上使用检测效果较好的Faster R-CNN算... 由于人体行为类内差异大,类间相似性大,而且还存在视觉角度与遮挡等问题,使用人工提取特征的方法特征提取难度大并且难以提取有效特征,使得人体行为检测率较低。针对这个问题,本文在物体检测的基础上使用检测效果较好的Faster R-CNN算法来进行人体行为检测,并对Faster R-CNN算法与批量规范化算法和在线难例挖掘算法进行结合,有效利用了深度学习算法实现人体行为检测。对此改进算法进行实验验证,验证的分类和位置精度达到了80%以上,实验结果表明,改进的算法具有识别精度高的特点。 展开更多
关键词 人体行为检测 区域卷积神经网络 在线难例挖掘 深度学习 目标检测 卷积神经网络 批规范化 迁移学习
在线阅读 下载PDF
基于Faster R-CNN和IoU优化的实验室人数统计与管理系统 被引量:27
10
作者 盛恒 黄铭 杨晶晶 《计算机应用》 CSCD 北大核心 2019年第6期1669-1674,共6页
针对人员位置相对固定的场景中实时人数统计的管理需求,以普通高校实验室为例,设计并实现了一套基于更快速的区域卷积神经网络(Faster R-CNN)和交并比(IoU)优化的实验室人数统计与管理系统。首先,使用Faster R-CNN模型对实验室内人员头... 针对人员位置相对固定的场景中实时人数统计的管理需求,以普通高校实验室为例,设计并实现了一套基于更快速的区域卷积神经网络(Faster R-CNN)和交并比(IoU)优化的实验室人数统计与管理系统。首先,使用Faster R-CNN模型对实验室内人员头部进行检测;然后,根据模型检测的输出结果,利用IoU算法滤去重复检测的目标;最后,采用基于坐标定位的方法确定实验室内各个工作台是否有人,并将相对应的数据存入数据库。该系统主要功能有:①实验室实时视频监控及远程管理;②定时自动拍照检测采集数据,为实验室的量化管理提供数据支撑;③实验室人员变化数据查询与可视化展示。实验结果表明,所提基于Faster R-CNN和IoU优化的实验室人数统计与管理系统可用于办公场景中实时人数统计和远程管理。 展开更多
关键词 卷积神经网络 目标检测 速的区域卷积神经网络 人数统计 交并比
在线阅读 下载PDF
基于Faster R-CNN算法的船舶识别检测 被引量:9
11
作者 崔巍 杨亮亮 +3 位作者 夏荣 牟向伟 樊晓伟 杨海峰 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2020年第2期182-187,223,共7页
目前,检测卫星图像中船舶的常用方法如合成孔径雷达(synthetic-aperture radar,SAR)对多目标仍难以达到精确检测,而更快速的区域卷积神经网络(faster region-based convolutional neural network,Faster R-CNN)算法是一种深度学习算法,... 目前,检测卫星图像中船舶的常用方法如合成孔径雷达(synthetic-aperture radar,SAR)对多目标仍难以达到精确检测,而更快速的区域卷积神经网络(faster region-based convolutional neural network,Faster R-CNN)算法是一种深度学习算法,用于物体检测和分类时,可以实现高精度实时监测。文章应用Faster R-CNN算法对卫星图像中的船舶进行识别和检测,并与传统尺度不变特征转换(scale-invariant feature transform,SIFT)算法、快速区域卷积神经网络(fast region-based convolutional neural network,Fast R-CNN)算法进行对比。研究结果表明,Faster R-CNN算法比传统SIFT算法和Fast R-CNN算法有更好的收敛速度和识别精度,该算法在船舶识别方面具有较大潜力。 展开更多
关键词 卫星图像 船舶检测 速的区域卷积神经网络(Faster R-CNN) 尺度不变特征转换(SIFT) 区域卷积神经网络(Fast R-CNN)
在线阅读 下载PDF
基于深度学习的地铁施工作业人员不安全行为识别与应用 被引量:12
12
作者 范冰倩 董秉聿 +3 位作者 王彪 李铭 吴松 佟瑞鹏 《中国安全科学学报》 CAS CSCD 北大核心 2023年第1期41-47,共7页
为有效识别地铁施工作业人员不安全行为,基于深度学习与计算机视觉技术,提出融合行为和身份识别的不安全行为识别方法。首先,对更快速的基于区域的卷积神经网络(Faster R-CNN)算法进行优化,引入高效通道注意力(ECA)模块提升行为识别的... 为有效识别地铁施工作业人员不安全行为,基于深度学习与计算机视觉技术,提出融合行为和身份识别的不安全行为识别方法。首先,对更快速的基于区域的卷积神经网络(Faster R-CNN)算法进行优化,引入高效通道注意力(ECA)模块提升行为识别的准确性;其次,将基于人脸超分辨率算法的人脸识别方法与行为识别相结合,提升图像像素水平并准确输出不安全行为执行人员相关信息;然后,行为识别与人脸识别并发进行,识别结果回流至数据库最终输出工人不安全行为报告;最后,选取某地铁施工项目的4种不安全行为进行识别方法的实证应用。研究表明:该方法可在地铁施工场景下进行有效应用,不安全行为识别和执行人员身份识别的准确率均达0.85以上,具有较高的准确度。 展开更多
关键词 深度学习 地铁施工 不安全行为识别 作业人员 速的基于区域卷积神经网络(Faster R-CNN) 人脸识别
在线阅读 下载PDF
基于激光雷达和视觉信息融合的车辆识别与跟踪 被引量:26
13
作者 宫铭钱 冀杰 +1 位作者 种一帆 陈琼红 《汽车技术》 CSCD 北大核心 2020年第11期8-15,共8页
为提高自动驾驶系统对车辆目标的识别和跟踪精度,提出一种基于激光雷达和单目视觉的信息融合框架。利用改进的DBSCAN算法对障碍物点云数据进行聚类,采用更快速区域卷积神经网络(Faster R-CNN)识别单目视觉图像中的车辆目标,融合两种传... 为提高自动驾驶系统对车辆目标的识别和跟踪精度,提出一种基于激光雷达和单目视觉的信息融合框架。利用改进的DBSCAN算法对障碍物点云数据进行聚类,采用更快速区域卷积神经网络(Faster R-CNN)识别单目视觉图像中的车辆目标,融合两种传感器的信息获得完整的车辆目标信息,使用联合概率数据关联(JPDA)算法实时跟踪目标车辆的运动状态。试验结果表明,该算法可有效避免传感器杂波的干扰,能够适应车辆目标的数量变化并及时更新航迹信息,具有较高的精度和鲁棒性。 展开更多
关键词 激光雷达 视觉 信息融合 DBSCAN 区域卷积神经网络 联合概率数据关联
在线阅读 下载PDF
基于Faster R-CNN的卫星图像污水处理厂识别 被引量:2
14
作者 王莉莉 张晓 《计算机应用》 CSCD 北大核心 2019年第S02期50-54,共5页
针对卫星图像中污水处理厂目标识别性能低的问题,提出了更快速区域卷积神经网络(Faster R-CNN)和工艺环节相结合的方法,检测污水处理厂、生化池和污泥泵房目标。在污水处理厂识别过程中,使用数据扩充技术、引入负样本等方法来扩充训练... 针对卫星图像中污水处理厂目标识别性能低的问题,提出了更快速区域卷积神经网络(Faster R-CNN)和工艺环节相结合的方法,检测污水处理厂、生化池和污泥泵房目标。在污水处理厂识别过程中,使用数据扩充技术、引入负样本等方法来扩充训练集样本;选用ZFNet、VGG和ResNet三种神经网络进行特征提取,采用Faster R-CNN方法训练目标检测模型,同时根据图像检出的工艺环节与污水处理厂之间的从属关系,过滤掉孤立的污水处理厂目标和工艺环节目标,提升污水处理厂的目标识别性能。实验结果表明,结合ResNet、Faster R-CNN和工艺环节方法的识别效果最好,相较于ResNet结合Faster R-CNN方法:准确率可以达到79.68%,提升了5.92%;召回率可以达到93.45%,提升了3.32%;F-measure可以达到86.2%,提升了4.84%。实验结果表明,该方法对不同结构、不同工艺环节的污水处理厂都有不错的识别效果,能夠兼顾识别精确率和召回率。 展开更多
关键词 卫星图像识别 污水处理厂识别 区域卷积神经网络 ResNet 工艺环节
在线阅读 下载PDF
改进Faster R-CNN的多通道检测算法 被引量:3
15
作者 殷小芳 辛月兰 +1 位作者 兰天 何晓明 《计算机工程与设计》 北大核心 2021年第12期3453-3460,共8页
鉴于目标检测中的物体外观会根据其基本形状及不同的姿势和视角而有很大的差异,对Faster R-CNN算法进行研究并提出一种多通道检测算法。根据图像宽高比给生成的RoI分配由3个通道组成的网络进行训练和测试,通过最小化正则函数R(W)和3对... 鉴于目标检测中的物体外观会根据其基本形状及不同的姿势和视角而有很大的差异,对Faster R-CNN算法进行研究并提出一种多通道检测算法。根据图像宽高比给生成的RoI分配由3个通道组成的网络进行训练和测试,通过最小化正则函数R(W)和3对损失函数之和L(W)来优化网络,3个通道共享fc6层来提高检测性能并节省内存空间。为验证算法的有效性,在多个数据集和自己拍摄的图像上进行实验验证,实验结果表明,在PASCALVOC2012数据集中改进算法平均精度为78.8%,相比其它相关算法在不同程度上有所提高。 展开更多
关键词 目标检测 区域卷积神经网络 平均精度 深度学习 多通道检测
在线阅读 下载PDF
深度学习在军用光缆线路无人机巡检中的应用 被引量:15
16
作者 张明江 李红卫 +2 位作者 赵卫虎 夏贵进 王程远 《光通信研究》 北大核心 2018年第6期57-61,共5页
军用光缆网是重要的国防基础通信设施,传统的人工徒步巡检是查找光缆线路隐患的主要措施,但其耗时长,人力物力消耗大,易受敷设方式和地形环境变化影响。而采用无人机进行光缆线路巡检,时效性强,安全性高且经济性好,是未来的重点发展方... 军用光缆网是重要的国防基础通信设施,传统的人工徒步巡检是查找光缆线路隐患的主要措施,但其耗时长,人力物力消耗大,易受敷设方式和地形环境变化影响。而采用无人机进行光缆线路巡检,时效性强,安全性高且经济性好,是未来的重点发展方向。由于工程车辆施工挖掘是造成光缆线路障碍的最主要原因,为此,文章提出将深度学习更快的基于区域的卷积神经网络(Faster R-CNN)目标检测方法应用到无人机航拍巡检图像的工程车辆检测中。基于航空影像中的车辆检测(VEDAI)公共数据集制作了工程车辆数据集,通过仿真训练和测试,实现了航拍图像中挖掘机和推土机等工程车辆的Faster RCNN目标检测,检测平均精度(AP)值达0.659,优于传统的可变形组建模型(DPM)和方向梯度直方图+局部二值模式+支持向量机(HOG+LBP+SVM)等机器学习检测算法,研究结果可为军用光缆线路的无人机巡检应用研究提供一定的参考。 展开更多
关键词 无人机光缆线路巡检 深度学习 的基于区域卷积神经网络 工程车辆检测
在线阅读 下载PDF
面向室内环境控制的人员信息检测系统的设计与实现 被引量:4
17
作者 张文利 郭向 +2 位作者 杨堃 王佳琪 朱清宇 《北京工业大学学报》 CAS CSCD 北大核心 2020年第5期456-465,共10页
为了自动获取室内环境中人员信息(数量、性别、体表温度信息),实现对室内环境设备进行有效调节及控制,提升室内人员的舒适度,提出一套基于红外热图像及可见光图像融合的面向室内环境控制的人员信息检测系统.系统通过同步采集室内场景中... 为了自动获取室内环境中人员信息(数量、性别、体表温度信息),实现对室内环境设备进行有效调节及控制,提升室内人员的舒适度,提出一套基于红外热图像及可见光图像融合的面向室内环境控制的人员信息检测系统.系统通过同步采集室内场景中的可见光图像及红外热图像,并利用相机的视场角进行图像配准.针对传统基于面部的人员检测方法易受到侧脸、背身等头部多姿态的影响,而导致检测精度下降的问题,采用基于更快速区域卷积神经网络(faster region-based convolutional neural network,Faster R-CNN)的头部检测算法在可见光图像中精准检测人员的头部位置,并进行人数统计;依据头部区域采用基于深度学习的性别检测算法,判断人员性别;将可见光图像中捕获的人员头部区域映射在红外热图像对应位置,利用红外热图像的温度标尺以及颜色映射关系,自动计算得到室内人员的体表温度,提高系统的独立性和可操作性.实验结果表明,本系统可以自动准确地检测实际场景中的室内人员,并获取人员个数、性别以及体表温度,实现对上述信息的有效统计和可视化显示,为控制室内环境提供良好的技术基础和数据支撑. 展开更多
关键词 人员信息检测 红外热图像 图像融合 深度学习 区域卷积神经网络(Faster R-CNN) 室内环境
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部