期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合黄金正弦和曲线自适应的多策略麻雀搜索算法 被引量:32
1
作者 高晨峰 陈家清 石默涵 《计算机应用研究》 CSCD 北大核心 2022年第2期491-499,共9页
针对元启发算法中麻雀搜索算法(SSA)的早熟收敛、易陷入局部最优、全局搜索性差等问题进行研究,提出一种融合黄金正弦和曲线自适应的多策略麻雀搜索算法。首先,利用Chebyshev混沌映射初始化种群,使初始解位置分布更为均匀,产生优质初始... 针对元启发算法中麻雀搜索算法(SSA)的早熟收敛、易陷入局部最优、全局搜索性差等问题进行研究,提出一种融合黄金正弦和曲线自适应的多策略麻雀搜索算法。首先,利用Chebyshev混沌映射初始化种群,使初始解位置分布更为均匀,产生优质初始解,增加种群丰富性;其次,引入黄金正弦和曲线自适应权重改进发现者和加入者位置更新方式,有效协调了全局搜索与局部挖掘能力,加快收敛速度;最后,动态选择随机游走或柯西-t扰动策略对最优麻雀位置进行扰动,提高算法跳出局部最优的能力以及收敛精度。选取14个基准函数进行测试,比较改进算法与其他九个元启发式算法的仿真结果,使用Wilcoxon秩和检验以及MAE(mean absolute error)排序来验证所提改进策略的有效性。结果表明,该算法在全局搜索性、克服局部最优、收敛速度、收敛精度、稳定性都有较大提升。 展开更多
关键词 麻雀搜索算法 黄金正弦算法 曲线自适应权重 柯西-t扰动 函数优化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部