An effective and simple way to develop equations from impact strain signals was proposed.Little research has been performed in this area,but this equation is very important for evaluating input signals in finite eleme...An effective and simple way to develop equations from impact strain signals was proposed.Little research has been performed in this area,but this equation is very important for evaluating input signals in finite element analysis impact tests and for obtaining additional information on material deformation and fracture processes under impact loading.For this purpose,dynamic impact responses were examined through signals obtained from a strain gauge installed on an impact striker connected to a data acquisition system.Aluminium 6061-T6 was used to extract strain responses on the striker during Charpy impact testing.Statistical analysis was performed using the I-kaz method,and curve fitting equations based on the equation for vibration response under a non-periodic force were used to evaluate the Charpy impact signals.The I-kaz coefficients and curve fitting equations were then compared and discussed with related parameters,such as velocities and thicknesses.Velocity and thickness were found to be related to the strain signal patterns,curve fitting equations and I-kaz coefficients.The equations developed using this method had R2 values greater than 97.7%.Finally,the constructed equations were determined to be suitable for evaluating Charpy impact strain signal patterns and obtaining additional information on fracture processes under impact loading.展开更多
The objective is to develop an approach for the determination of the target reliability index for serviceability limit state(SLS) of single piles. This contributes to conducting the SLS reliability-based design(RBD) o...The objective is to develop an approach for the determination of the target reliability index for serviceability limit state(SLS) of single piles. This contributes to conducting the SLS reliability-based design(RBD) of piles. Based on a two-parameter,hyperbolic curve-fitting equation describing the load-settlement relation of piles, the SLS model factor is defined. Then, taking into account the uncertainties of load-settlement model, load and bearing capacity of piles, the formula for computing the SLS reliability index(βsls) is obtained using the mean value first order second moment(MVFOSM) method. Meanwhile, the limit state function for conducting the SLS reliability analysis by the Monte Carlo simulation(MCS) method is established. These two methods are finally applied to determine the SLS target reliability index. Herein, the limiting tolerable settlement(slt) is treated as a random variable. For illustration, four load test databases from South Africa are compiled again to conduct reliability analysis and present the recommended target reliability indices. The results indicate that the MVFOSM method overestimates βsls compared to that computed by the MCS method. Besides, both factor of safety(FS) and slt are key factors influencing βsls, so the combination of FS and βsls is welcome to be used for the SLS reliability analysis of piles when slt is determined. For smaller slt, pile types and soils conditions have significant influence on the SLS target reliability indices; for larger slt, slt is the major factor having influence on the SLS target reliability indices. This proves that slt is the most key parameter for the determination of the SLS target reliability index.展开更多
Numerous experimental studies reveal that the mechanical and deformational behaviors of sands are dependent on the combined effect of void ratio and stress. To predict this complex behavior of sands, a hypo-elastic mo...Numerous experimental studies reveal that the mechanical and deformational behaviors of sands are dependent on the combined effect of void ratio and stress. To predict this complex behavior of sands, a hypo-elastic model is developed based on the cross-anisotropic elasticity model, which involves four parameters: bulk module, tangent Young's module, volume deformation coefficient and Poisson ratio. A parameter defined as virtual peak deviatoric stress dependent on state parameter is introduced into hyperbolic stress strain relationship to determine tangent Young's module. In addition, an existing fitting equation for isotropic compression curves and an existing dilatancy equation, which can consider the effect of state of sands, are employed to determine bulk module and volume deformation coefficient. Thirteen model constants are involved in the proposed model, the values of which are fixed for a sand over a wide range of initial void ratios and initial confining pressures. Well known experimental data for drained and undrained triaxial compression tests of Toyoura sand are successfully modeled.展开更多
基金Universiti Kebangsaan Malaysia grant UKM-KK-03-FRGS 0118-2010Universiti Teknikal Malaysia Melaka for supporting these research activities
文摘An effective and simple way to develop equations from impact strain signals was proposed.Little research has been performed in this area,but this equation is very important for evaluating input signals in finite element analysis impact tests and for obtaining additional information on material deformation and fracture processes under impact loading.For this purpose,dynamic impact responses were examined through signals obtained from a strain gauge installed on an impact striker connected to a data acquisition system.Aluminium 6061-T6 was used to extract strain responses on the striker during Charpy impact testing.Statistical analysis was performed using the I-kaz method,and curve fitting equations based on the equation for vibration response under a non-periodic force were used to evaluate the Charpy impact signals.The I-kaz coefficients and curve fitting equations were then compared and discussed with related parameters,such as velocities and thicknesses.Velocity and thickness were found to be related to the strain signal patterns,curve fitting equations and I-kaz coefficients.The equations developed using this method had R2 values greater than 97.7%.Finally,the constructed equations were determined to be suitable for evaluating Charpy impact strain signal patterns and obtaining additional information on fracture processes under impact loading.
基金Projects(51278216,51308241)supported by the National Natural Science Foundation of ChinaProject(2013BS010)supported by the Funds of Henan University of Technology for High-level Talents,China
文摘The objective is to develop an approach for the determination of the target reliability index for serviceability limit state(SLS) of single piles. This contributes to conducting the SLS reliability-based design(RBD) of piles. Based on a two-parameter,hyperbolic curve-fitting equation describing the load-settlement relation of piles, the SLS model factor is defined. Then, taking into account the uncertainties of load-settlement model, load and bearing capacity of piles, the formula for computing the SLS reliability index(βsls) is obtained using the mean value first order second moment(MVFOSM) method. Meanwhile, the limit state function for conducting the SLS reliability analysis by the Monte Carlo simulation(MCS) method is established. These two methods are finally applied to determine the SLS target reliability index. Herein, the limiting tolerable settlement(slt) is treated as a random variable. For illustration, four load test databases from South Africa are compiled again to conduct reliability analysis and present the recommended target reliability indices. The results indicate that the MVFOSM method overestimates βsls compared to that computed by the MCS method. Besides, both factor of safety(FS) and slt are key factors influencing βsls, so the combination of FS and βsls is welcome to be used for the SLS reliability analysis of piles when slt is determined. For smaller slt, pile types and soils conditions have significant influence on the SLS target reliability indices; for larger slt, slt is the major factor having influence on the SLS target reliability indices. This proves that slt is the most key parameter for the determination of the SLS target reliability index.
基金Project(2010BC732101)supported by the National Basic Research Program of China
文摘Numerous experimental studies reveal that the mechanical and deformational behaviors of sands are dependent on the combined effect of void ratio and stress. To predict this complex behavior of sands, a hypo-elastic model is developed based on the cross-anisotropic elasticity model, which involves four parameters: bulk module, tangent Young's module, volume deformation coefficient and Poisson ratio. A parameter defined as virtual peak deviatoric stress dependent on state parameter is introduced into hyperbolic stress strain relationship to determine tangent Young's module. In addition, an existing fitting equation for isotropic compression curves and an existing dilatancy equation, which can consider the effect of state of sands, are employed to determine bulk module and volume deformation coefficient. Thirteen model constants are involved in the proposed model, the values of which are fixed for a sand over a wide range of initial void ratios and initial confining pressures. Well known experimental data for drained and undrained triaxial compression tests of Toyoura sand are successfully modeled.