期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多分类融合模型的智能电能表故障预测 被引量:8
1
作者 陈叶 韩彤 +2 位作者 魏龄 于秀丽 李鑫雄 《电测与仪表》 北大核心 2022年第11期162-168,共7页
由于智能电能表功能的丰富多样,随之而来的是设备故障类型及故障率的不断增加,如何准确地判断智能电能表的故障类型,提高故障表的检修效率,对保障智能电能表的安全稳定运行十分重要。文中提出一种基于多分类融合模型的智能电能表故障预... 由于智能电能表功能的丰富多样,随之而来的是设备故障类型及故障率的不断增加,如何准确地判断智能电能表的故障类型,提高故障表的检修效率,对保障智能电能表的安全稳定运行十分重要。文中提出一种基于多分类融合模型的智能电能表故障预测算法。针对智能电能表故障进行多维度分析及故障类型筛选;通过欠采样和过采样相结合的混合采样方式解决数据集中类不平衡问题,构建分类预测模型所需数据;利用基础分类算法的组合获取最优融合算法,在公共数据集上验证了所提算法的有效性,融合后的准确率较基础分类模型有稳定提升,以近年来电网系统中实时采集的智能电能表故障数据为基础,进行了基础模型与融合后算法模型的实验对比,结果表明文中所提的多分类融合算法模型在故障预测的准确率和可靠性上有明显的提升。 展开更多
关键词 智能电能表故障 混合采样 多分类算法 模型融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部