期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
智能手机的主要叶类蔬菜品质和新鲜度指标的光谱检测
被引量:
5
1
作者
简讯
张立福
+4 位作者
杨杭
孙雪剑
代双凤
张红明
李晶宜
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2019年第5期1524-1529,共6页
蔬菜品质和新鲜度的高低不仅影响食用时的口感,而且营养程度也不一样。作为蔬菜品质和新鲜度重要参考指标之一的叶绿素和含水量的检测,已经越来越受到国内外学者的重视。相比于传统的肉眼目视判断的检验方法,可见-近红外光谱分析具有快...
蔬菜品质和新鲜度的高低不仅影响食用时的口感,而且营养程度也不一样。作为蔬菜品质和新鲜度重要参考指标之一的叶绿素和含水量的检测,已经越来越受到国内外学者的重视。相比于传统的肉眼目视判断的检验方法,可见-近红外光谱分析具有快速高效、无损、非接触等独特的优势,更加适合蔬菜的实时检测。目前相关研究主要集中在生长中植被叶绿素和含水量的反演,对市场上成品蔬菜的研究较少,或者研究对象单一,缺乏市场普适性。此外,光谱数据的获取需要专业的光谱仪采集,费时费力,各种生理生化指标的研究离实用化还有很长的距离。为了与实际相结合,基于智能手机光谱系统(SCSS)建立了快速、准确、普适性强的反演蔬菜叶绿素和含水量的模型,并通过地面光谱仪SVC数据验证了该系统的可靠性。选取市场典型的五种蔬菜(菠菜、小油菜、油麦菜、生菜和娃娃菜)作为实验样本,分别进行常温保存和冷藏保存来模拟现实中菜市场和超市的蔬菜储存环境。每隔24h进行一次数据采集。对获取的原始光谱数据进行波段选择和小波变换去噪的预处理。构建蔬菜叶绿素反演指数(VCRI_((m,n)))和蔬菜含水量反演指数(VWRI_((i,j))),分别提取该两个指数与叶绿素和含水量实测值的相关系数R作为权重系数,最终建立了叶绿素和含水量的加权平均反演模型。实验结果表明,SVC仪器和SCSS两者数据针对蔬菜叶绿素和含水量的敏感波段基本一致,叶绿素反演的敏感波段在730~980nm之间,反演精度R2分别为0.863和0.808 1,标准差为8.679 5和8.892 5;含水量反演的敏感波段在水汽吸收波段950~1 000nm之间,反演精度R2分别为0.742 9和0.712 9,标准差为8.789 9%和8.861 4%。SVC实验数据跟SCSS实验数据结果十分接近,验证了新型智能手机光谱系统实时监测蔬菜叶绿素和含水量的有效性。智能手机光谱系统具有体积小、价格便宜的优势,结合网络云端服务和实时数据反馈的特点,能够实现蔬菜品质和新鲜度指标的智能检测,让光谱分析真正应用于人们日常生活中。
展开更多
关键词
蔬菜
智能手机光谱系统
叶绿素值
含水量
实时无损检测
在线阅读
下载PDF
职称材料
题名
智能手机的主要叶类蔬菜品质和新鲜度指标的光谱检测
被引量:
5
1
作者
简讯
张立福
杨杭
孙雪剑
代双凤
张红明
李晶宜
机构
中国科学院遥感与数字地球研究所
中国科学院大学
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2019年第5期1524-1529,共6页
基金
国家自然科学基金项目(41871352
41701474)
国家重点研发计划项目(2017YFC1500901)资助
文摘
蔬菜品质和新鲜度的高低不仅影响食用时的口感,而且营养程度也不一样。作为蔬菜品质和新鲜度重要参考指标之一的叶绿素和含水量的检测,已经越来越受到国内外学者的重视。相比于传统的肉眼目视判断的检验方法,可见-近红外光谱分析具有快速高效、无损、非接触等独特的优势,更加适合蔬菜的实时检测。目前相关研究主要集中在生长中植被叶绿素和含水量的反演,对市场上成品蔬菜的研究较少,或者研究对象单一,缺乏市场普适性。此外,光谱数据的获取需要专业的光谱仪采集,费时费力,各种生理生化指标的研究离实用化还有很长的距离。为了与实际相结合,基于智能手机光谱系统(SCSS)建立了快速、准确、普适性强的反演蔬菜叶绿素和含水量的模型,并通过地面光谱仪SVC数据验证了该系统的可靠性。选取市场典型的五种蔬菜(菠菜、小油菜、油麦菜、生菜和娃娃菜)作为实验样本,分别进行常温保存和冷藏保存来模拟现实中菜市场和超市的蔬菜储存环境。每隔24h进行一次数据采集。对获取的原始光谱数据进行波段选择和小波变换去噪的预处理。构建蔬菜叶绿素反演指数(VCRI_((m,n)))和蔬菜含水量反演指数(VWRI_((i,j))),分别提取该两个指数与叶绿素和含水量实测值的相关系数R作为权重系数,最终建立了叶绿素和含水量的加权平均反演模型。实验结果表明,SVC仪器和SCSS两者数据针对蔬菜叶绿素和含水量的敏感波段基本一致,叶绿素反演的敏感波段在730~980nm之间,反演精度R2分别为0.863和0.808 1,标准差为8.679 5和8.892 5;含水量反演的敏感波段在水汽吸收波段950~1 000nm之间,反演精度R2分别为0.742 9和0.712 9,标准差为8.789 9%和8.861 4%。SVC实验数据跟SCSS实验数据结果十分接近,验证了新型智能手机光谱系统实时监测蔬菜叶绿素和含水量的有效性。智能手机光谱系统具有体积小、价格便宜的优势,结合网络云端服务和实时数据反馈的特点,能够实现蔬菜品质和新鲜度指标的智能检测,让光谱分析真正应用于人们日常生活中。
关键词
蔬菜
智能手机光谱系统
叶绿素值
含水量
实时无损检测
Keywords
Vegetable
Smart cellphone spectral system
Chlorophyll
Water content
Nondestructive detection in real-time
分类号
TP79 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
智能手机的主要叶类蔬菜品质和新鲜度指标的光谱检测
简讯
张立福
杨杭
孙雪剑
代双凤
张红明
李晶宜
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2019
5
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部