期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
电力系统中机组组合的现代智能优化方法综述 被引量:30
1
作者 袁晓辉 袁艳斌 张勇传 《电力自动化设备》 EI CSCD 北大核心 2003年第2期73-78,共6页
在深入探讨电力系统机组组合的各种现代智能优化算法的基础上,加以分类总结,详细评述了各种方法所取得的研究成果和存在的不足之处。具体表现在:由于模拟进化算法的随机性,不能保证每次计算都能收敛到全局最优解,同时还存在“早熟”现象... 在深入探讨电力系统机组组合的各种现代智能优化算法的基础上,加以分类总结,详细评述了各种方法所取得的研究成果和存在的不足之处。具体表现在:由于模拟进化算法的随机性,不能保证每次计算都能收敛到全局最优解,同时还存在“早熟”现象;模拟退火算法存在收敛速度慢的缺点;禁忌搜索算法存在对初始解依赖性强和搜索过程只是单对单的操作;人工神经网络的学习训练易陷入局部极值区,同时指出不同的具体问题,网络合适的隐含层数目和节点数目较难确定;模糊优化算法中隶属函数的确定及专家系统中专家的知识、经验和规则的获取都是棘手的问题。 展开更多
关键词 电力系统 机组组合 经济运行 混合整数非线性规则 现代智能优化法 人工神经网络
在线阅读 下载PDF
基于自适应人工鱼群算法的多用户检测器 被引量:37
2
作者 俞洋 殷志锋 田亚菲 《电子与信息学报》 EI CSCD 北大核心 2007年第1期121-124,共4页
将智能优化算法应用到多用户检测器(MUD)问题中,是近年来改善MUD性能的一个研究方向。人工鱼群算法(AFSA)是一种新的智能优化算法,该算法具有一些遗传算法和粒子群算法不具备的特点。但是用其解决离散优化问题时,该算法保持探索与开发... 将智能优化算法应用到多用户检测器(MUD)问题中,是近年来改善MUD性能的一个研究方向。人工鱼群算法(AFSA)是一种新的智能优化算法,该算法具有一些遗传算法和粒子群算法不具备的特点。但是用其解决离散优化问题时,该算法保持探索与开发平衡的能力较差,且在算法运行后期搜索的盲目性较大,从而影响了该算法搜索的质量和效率。为了克服这些缺点,本文对该算法进行了改进,得到两种自适应人工鱼群算法(AAFSA_FP和AAFSA_SP),并首次用其构建了新的多用户检测器。仿真结果表明,该方法与基于遗传算法的多用户检测器和基于粒子群算法的多用户检测器相比,在误码率、抗远近效应的能力和收敛速度等方面都有明显的改善。 展开更多
关键词 多用户检测 人工鱼群算 智能优化法
在线阅读 下载PDF
A Clustering-based Location Allocation Method for Delivery Sites under Epidemic Situations
3
作者 Zhou Yaqiong Chen Junqi +2 位作者 Li Weishi Qiu Sihang Ju Rusheng 《系统仿真学报》 CAS CSCD 北大核心 2024年第12期2782-2796,共15页
To address the poor performance of commonly used intelligent optimization algorithms in solving location problems—specifically regarding effectiveness,efficiency,and stability—this study proposes a novel location al... To address the poor performance of commonly used intelligent optimization algorithms in solving location problems—specifically regarding effectiveness,efficiency,and stability—this study proposes a novel location allocation method for the delivery sites to deliver daily necessities during epidemic quarantines.After establishing the optimization objectives and constraints,we developed a relevant mathematical model based on the collected data and utilized traditional intelligent optimization algorithms to obtain Pareto optimal solutions.Building on the characteristics of these Pareto front solutions,we introduced an improved clustering algorithm and conducted simulation experiments using data from Changchun City.The results demonstrate that the proposed algorithm outperforms traditional intelligent optimization algorithms in terms of effectiveness,efficiency,and stability,achieving reductions of approximately 12%and 8%in time and labor costs,respectively,compared to the baseline algorithm. 展开更多
关键词 location problem clustering algorithm intelligent optimization algorithm Pareto front
在线阅读 下载PDF
Short-term forecasting optimization algorithms for wind speed along Qinghai-Tibet railway based on different intelligent modeling theories 被引量:8
4
作者 刘辉 田红旗 李燕飞 《Journal of Central South University》 SCIE EI CAS 2009年第4期690-696,共7页
To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the s... To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the system to make more accurate scheduling decision, two optimization algorithms were proposed. Using them to make calculative examples for actual wind speed time series from the 18th meteorological station, the results show that: the optimization algorithm based on wavelet analysis method and improved time series analysis method can attain high-precision multi-step forecasting values, the mean relative errors of one-step, three-step, five-step and ten-step forecasting are only 0.30%, 0.75%, 1.15% and 1.65%, respectively. The optimization algorithm based on wavelet analysis method and Kalman time series analysis method can obtain high-precision one-step forecasting values, the mean relative error of one-step forecasting is reduced by 61.67% to 0.115%. The two optimization algorithms both maintain the modeling simple character, and can attain prediction explicit equations after modeling calculation. 展开更多
关键词 train safety wind speed forecasting wavelet analysis time series analysis Kalman filter optimization algorithm
在线阅读 下载PDF
Intelligent anti-swing control for bridge crane 被引量:2
5
作者 陈志梅 孟文俊 张井岗 《Journal of Central South University》 SCIE EI CAS 2012年第10期2774-2781,共8页
A new intelligent anti-swing control scheme,which combined fuzzy neural network(FNN) and sliding mode control(SMC) with particle swarm optimization(PSO),was presented for bridge crane.The outputs of three fuzzy neural... A new intelligent anti-swing control scheme,which combined fuzzy neural network(FNN) and sliding mode control(SMC) with particle swarm optimization(PSO),was presented for bridge crane.The outputs of three fuzzy neural networks were used to approach the uncertainties of the positioning subsystem,lifting-rope subsystem and anti-swing subsystem.Then,the parameters of the controller were optimized with PSO to enable the system to have good dynamic performances.During the process of high-speed load hoisting and dropping,this method can not only realize the accurate position of the trolley and eliminate the sway of the load in spite of existing uncertainties,and the maximum swing angle is only ±0.1 rad,but also completely eliminate the chattering of conventional sliding mode control and improve the robustness of system.The simulation results show the correctness and validity of this method. 展开更多
关键词 bridge crane anti-swing control fuzzy neural network sliding mode control particle swarm optimization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部