Fast growth of mobile internet and internet-of-things has propelled the concept formation and research on 5G wireless communications systems which are to be standardized around 2020(IMT-2020).There will be diverse app...Fast growth of mobile internet and internet-of-things has propelled the concept formation and research on 5G wireless communications systems which are to be standardized around 2020(IMT-2020).There will be diverse application scenarios expected for 5G networks.Hence,key performance indicators(KPIs) of 5G systems would be very diverse,not just the peak data rate and average/edge spectral efficiency requirements as in previous generations.For each typical scenario,multiple technologies may be used independently or jointly to improve the transmission efficiency,to lower the cost,and to increase the number of connections,etc.Key enabling technologies are discussed which include massive MIMO,ultradense deployment specific techniques,nonorthogonal transmission,high frequency communications,etc.展开更多
The rapid growth of air traffic has continuously increased the workload of controllers,which has become an important factor restricting sector capacity.If similar traffic scenes can be identified,the historical decisi...The rapid growth of air traffic has continuously increased the workload of controllers,which has become an important factor restricting sector capacity.If similar traffic scenes can be identified,the historical decision-making experience may be used to help controllers decide control strategies quickly.Considering that there are many traffic scenes and it is hard to label them all,in this paper,we propose an active SVM metric learning(ASVM2L)algorithm to measure and identify the similar traffic scenes.First of all,we obtain some traffic scene samples correctly labeled by experienced air traffic controllers.We design an active sampling strategy based on voting difference to choose the most valuable unlabeled samples and label them.Then the metric matrix of all the labeled samples is learned and used to complete the classification of traffic scenes.We verify the effectiveness of ASVM2L on standard data sets,and then use it to measure and classify the traffic scenes on the historical air traffic data set of the Central South Sector of China.The experimental results show that,compared with other existing methods,the proposed method can use the information of traffic scene samples more thoroughly and achieve better classification performance under limited labeled samples.展开更多
Air traffic controllers face challenging initiatives due to uncertainty in air traffic.One way to support their initiatives is to identify similar operation scenes.Based on the operation characteristics of typical bus...Air traffic controllers face challenging initiatives due to uncertainty in air traffic.One way to support their initiatives is to identify similar operation scenes.Based on the operation characteristics of typical busy area control airspace,an complexity measurement indicator system is established.We find that operation in area sector is characterized by aggregation and continuity,and that dimensionality and information redundancy reduction are feasible for dynamic operation data base on principle components.Using principle components,discrete features and time series features are constructed.Based on Gaussian kernel function,Euclidean distance and dynamic time warping(DTW)are used to measure the similarity of the features.Then the matrices of similarity are input in Spectral Clustering.The clustering results show that similar scenes of trend are not ideal and similar scenes of modes are good base on the indicator system.Finally,actual vertical operation decisions for area sector and results of identification are compared,which are visualized by metric multidimensional scaling(MDS)plots.We find that identification results can well reflect the operation at peak hours,but controllers make different decisions under the similar conditions before dawn.The compliance rate of busy operation mode and division decisions at peak hours is 96.7%.The results also show subjectivity of actual operation and objectivity of identification.In most scenes,we observe that similar air traffic activities provide regularity for initiatives,validating the potential of this approach for initiatives and other artificial intelligence support.展开更多
文摘Fast growth of mobile internet and internet-of-things has propelled the concept formation and research on 5G wireless communications systems which are to be standardized around 2020(IMT-2020).There will be diverse application scenarios expected for 5G networks.Hence,key performance indicators(KPIs) of 5G systems would be very diverse,not just the peak data rate and average/edge spectral efficiency requirements as in previous generations.For each typical scenario,multiple technologies may be used independently or jointly to improve the transmission efficiency,to lower the cost,and to increase the number of connections,etc.Key enabling technologies are discussed which include massive MIMO,ultradense deployment specific techniques,nonorthogonal transmission,high frequency communications,etc.
基金supported by the National Natural Science Foundation of China(No.61501229)the Fundamental Research Funds for the Central Universities(Nos.2019054,2020045)。
文摘The rapid growth of air traffic has continuously increased the workload of controllers,which has become an important factor restricting sector capacity.If similar traffic scenes can be identified,the historical decision-making experience may be used to help controllers decide control strategies quickly.Considering that there are many traffic scenes and it is hard to label them all,in this paper,we propose an active SVM metric learning(ASVM2L)algorithm to measure and identify the similar traffic scenes.First of all,we obtain some traffic scene samples correctly labeled by experienced air traffic controllers.We design an active sampling strategy based on voting difference to choose the most valuable unlabeled samples and label them.Then the metric matrix of all the labeled samples is learned and used to complete the classification of traffic scenes.We verify the effectiveness of ASVM2L on standard data sets,and then use it to measure and classify the traffic scenes on the historical air traffic data set of the Central South Sector of China.The experimental results show that,compared with other existing methods,the proposed method can use the information of traffic scene samples more thoroughly and achieve better classification performance under limited labeled samples.
基金the National Natural Science Foundation of China(Nos.71731001,61573181,71971114)the Fundamental Research Funds for the Central Universities(No.NS2020045)。
文摘Air traffic controllers face challenging initiatives due to uncertainty in air traffic.One way to support their initiatives is to identify similar operation scenes.Based on the operation characteristics of typical busy area control airspace,an complexity measurement indicator system is established.We find that operation in area sector is characterized by aggregation and continuity,and that dimensionality and information redundancy reduction are feasible for dynamic operation data base on principle components.Using principle components,discrete features and time series features are constructed.Based on Gaussian kernel function,Euclidean distance and dynamic time warping(DTW)are used to measure the similarity of the features.Then the matrices of similarity are input in Spectral Clustering.The clustering results show that similar scenes of trend are not ideal and similar scenes of modes are good base on the indicator system.Finally,actual vertical operation decisions for area sector and results of identification are compared,which are visualized by metric multidimensional scaling(MDS)plots.We find that identification results can well reflect the operation at peak hours,but controllers make different decisions under the similar conditions before dawn.The compliance rate of busy operation mode and division decisions at peak hours is 96.7%.The results also show subjectivity of actual operation and objectivity of identification.In most scenes,we observe that similar air traffic activities provide regularity for initiatives,validating the potential of this approach for initiatives and other artificial intelligence support.