期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
封建官宦的进步家教及其启示
1
作者 陈甲标 《领导科学》 北大核心 1990年第11期46-47,共2页
在中国几千年的封建社会里,为官为宦之家大多纨绔子弟,无所作为。但其中也有教子有方,人才屡出者。史如:唐代房彦谦父子。父房彦谦官至刺史,清正廉明,被治下“号为慈父”,子玄龄为唐太宗宰相,是历史上的名相,有“房(玄龄)谋杜(如晦)断... 在中国几千年的封建社会里,为官为宦之家大多纨绔子弟,无所作为。但其中也有教子有方,人才屡出者。史如:唐代房彦谦父子。父房彦谦官至刺史,清正廉明,被治下“号为慈父”,子玄龄为唐太宗宰相,是历史上的名相,有“房(玄龄)谋杜(如晦)断”之称。明代戚景通父子。父戚景通任都指挥使,虽高官得做,却家境清贫。戚继光子承父志。 展开更多
关键词 房彦谦 清正廉明 景通 抗倭 领导干部 端正党风 家庭教育 子玄 徐勉 戒奢
在线阅读 下载PDF
借春恨悲秋的主题抒国运衰微的哀思——读李璟词
2
作者 邓革夫 《云梦学刊》 1990年第1期51-53,共3页
李璟(916—961)初名景通,字伯玉,南唐烈祖李昇的长子。九四三年继位,后称南唐中主,庙号元宗。作为国君李璟是很平庸的,作为词人李璟有很高的造诣。他留下的四首词,在词史上有一定的地位和影响。这四首词可能都是他晚期的作品,有一个共... 李璟(916—961)初名景通,字伯玉,南唐烈祖李昇的长子。九四三年继位,后称南唐中主,庙号元宗。作为国君李璟是很平庸的,作为词人李璟有很高的造诣。他留下的四首词,在词史上有一定的地位和影响。这四首词可能都是他晚期的作品,有一个共同的特别,就是借用男女情事,春恨悲秋的主题,表现词人在特定环境下的感受和情怀,抒发他因国运衰微的哀思。李璟晚期的处境确实是很艰难的。他无时不为自身和南唐的安危存亡担忧。当这种苦闷无法解脱需要宣泄时,他就以自己的爱好和擅长,借用风靡一时的小词形式,传统的春恨悲秋的主题抒发出来。 展开更多
关键词 李璟 首词 词史 伯玉 落花风 摊破 望远行 景通 花间词派 《人间词话》
在线阅读 下载PDF
Application Scenarios and Enabling Technologies of 5G 被引量:13
3
作者 YUAN Yifei ZHU Longming 《China Communications》 SCIE CSCD 2014年第11期69-79,共11页
Fast growth of mobile internet and internet-of-things has propelled the concept formation and research on 5G wireless communications systems which are to be standardized around 2020(IMT-2020).There will be diverse app... Fast growth of mobile internet and internet-of-things has propelled the concept formation and research on 5G wireless communications systems which are to be standardized around 2020(IMT-2020).There will be diverse application scenarios expected for 5G networks.Hence,key performance indicators(KPIs) of 5G systems would be very diverse,not just the peak data rate and average/edge spectral efficiency requirements as in previous generations.For each typical scenario,multiple technologies may be used independently or jointly to improve the transmission efficiency,to lower the cost,and to increase the number of connections,etc.Key enabling technologies are discussed which include massive MIMO,ultradense deployment specific techniques,nonorthogonal transmission,high frequency communications,etc. 展开更多
关键词 5G IMT-2020 ultra-dense networks massive MIMO non-orthogonal transmission
在线阅读 下载PDF
Identification of Similar Air Traffic Scenes with Active Metric Learning 被引量:2
4
作者 CHEN Haiyan HOU Xiaye +1 位作者 YUAN Ligang ZHANG Bing 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第4期625-633,共9页
The rapid growth of air traffic has continuously increased the workload of controllers,which has become an important factor restricting sector capacity.If similar traffic scenes can be identified,the historical decisi... The rapid growth of air traffic has continuously increased the workload of controllers,which has become an important factor restricting sector capacity.If similar traffic scenes can be identified,the historical decision-making experience may be used to help controllers decide control strategies quickly.Considering that there are many traffic scenes and it is hard to label them all,in this paper,we propose an active SVM metric learning(ASVM2L)algorithm to measure and identify the similar traffic scenes.First of all,we obtain some traffic scene samples correctly labeled by experienced air traffic controllers.We design an active sampling strategy based on voting difference to choose the most valuable unlabeled samples and label them.Then the metric matrix of all the labeled samples is learned and used to complete the classification of traffic scenes.We verify the effectiveness of ASVM2L on standard data sets,and then use it to measure and classify the traffic scenes on the historical air traffic data set of the Central South Sector of China.The experimental results show that,compared with other existing methods,the proposed method can use the information of traffic scene samples more thoroughly and achieve better classification performance under limited labeled samples. 展开更多
关键词 air traffic similar scene active learning metric learning SVM
在线阅读 下载PDF
Identifying Similar Operation Scenes for Busy Area Sector Dynamic Management 被引量:2
5
作者 HU Minghua ZHANG Xuan +2 位作者 YUAN Ligang CHEN Haiyan GE Jiaming 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第4期615-629,共15页
Air traffic controllers face challenging initiatives due to uncertainty in air traffic.One way to support their initiatives is to identify similar operation scenes.Based on the operation characteristics of typical bus... Air traffic controllers face challenging initiatives due to uncertainty in air traffic.One way to support their initiatives is to identify similar operation scenes.Based on the operation characteristics of typical busy area control airspace,an complexity measurement indicator system is established.We find that operation in area sector is characterized by aggregation and continuity,and that dimensionality and information redundancy reduction are feasible for dynamic operation data base on principle components.Using principle components,discrete features and time series features are constructed.Based on Gaussian kernel function,Euclidean distance and dynamic time warping(DTW)are used to measure the similarity of the features.Then the matrices of similarity are input in Spectral Clustering.The clustering results show that similar scenes of trend are not ideal and similar scenes of modes are good base on the indicator system.Finally,actual vertical operation decisions for area sector and results of identification are compared,which are visualized by metric multidimensional scaling(MDS)plots.We find that identification results can well reflect the operation at peak hours,but controllers make different decisions under the similar conditions before dawn.The compliance rate of busy operation mode and division decisions at peak hours is 96.7%.The results also show subjectivity of actual operation and objectivity of identification.In most scenes,we observe that similar air traffic activities provide regularity for initiatives,validating the potential of this approach for initiatives and other artificial intelligence support. 展开更多
关键词 air traffic similar scenes unsupervised clustering dynamic operation time series similarity measure
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部