期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合响应特征差异的多模态AI虚假信息检测
1
作者 张新生 林承宇 +1 位作者 马玉龙 王润周 《情报杂志》 北大核心 2025年第7期122-134,共13页
[研究目的]不法分子利用AI生成虚假图文信息,扰乱公众认知,威胁社会稳定。现有检测方法在面对不同AI模型生成的信息时普适性较弱,难以精准识别虚假内容。针对这一挑战,该研究从生成式AI的响应特征差异出发,探索有效的检测机制,以提升虚... [研究目的]不法分子利用AI生成虚假图文信息,扰乱公众认知,威胁社会稳定。现有检测方法在面对不同AI模型生成的信息时普适性较弱,难以精准识别虚假内容。针对这一挑战,该研究从生成式AI的响应特征差异出发,探索有效的检测机制,以提升虚假信息检测的准确性和鲁棒性。[研究方法]通过对GPT、PaLM2、Llama2、Mixtral、RWKV五种主流生成模型的文本特征进行对比分析,提取词汇词性、情感倾向、语法结构、困惑度等多维度差异特征,并引入BERT与Vision-Transformer融合的BVT-CNN多模态虚假信息检测模型。实验采用消融对比方法,评估差异特征对检测性能的影响。[研究结果/结论]结果表明,融合差异特征后,wF1指标提高了4.94%,显著增强了对混合生成式AI信息的检测能力。研究成果不仅优化了AI虚假信息检测策略,对多种生成模型在响应特征上的差异进行归纳分析。 展开更多
关键词 生成式AI 虚假信息检测 响应特征 普适性检测 差异特征 多模态
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部