期刊文献+
共找到87篇文章
< 1 2 5 >
每页显示 20 50 100
RGB-T显著性目标检测综述
1
作者 吴锦涛 王安志 任春洪 《红外技术》 北大核心 2025年第1期1-9,共9页
除RGB图像外,热红外图像也能提取出对显著性目标检测至关重要的显著性信息。热红外图像随着红外传感设备的发展和普及已经变得易于获取,RGB-T显著性目标检测已成为了热门研究领域,但目前仍缺少对现有方法全面的综述。首先介绍了基于机... 除RGB图像外,热红外图像也能提取出对显著性目标检测至关重要的显著性信息。热红外图像随着红外传感设备的发展和普及已经变得易于获取,RGB-T显著性目标检测已成为了热门研究领域,但目前仍缺少对现有方法全面的综述。首先介绍了基于机器学习的RGB-T显著性目标检测方法,然后着重介绍了两类基于深度学习的RGB-T显著性目标检测方法:基于卷积神经网络和基于Vision Transformer的方法。随后对相关数据集和评价指标进行介绍,并在这些数据集上对代表性的方法进行了定性和定量的比较分析。最后对RGB-T显著性目标检测面临的挑战及未来的发展方向进行了总结与展望。 展开更多
关键词 显著性目标检测 热红外图像 RGB-T显著性目标检测 深度学习
在线阅读 下载PDF
场景结构知识增强的协同显著性目标检测 被引量:1
2
作者 胡升龙 陈彬 +1 位作者 张开华 宋慧慧 《计算机工程》 北大核心 2025年第1期31-41,共11页
现有的协同显著性目标检测(CoSOD)方法通过挖掘组内一致性与组间差异性来学习判别性表征,这种范式因缺乏语义标签的引导导致所学表征的判别性受限,难以应对复杂的非协同目标的干扰。为了解决这一问题,提出一种新的场景结构知识增强的Co... 现有的协同显著性目标检测(CoSOD)方法通过挖掘组内一致性与组间差异性来学习判别性表征,这种范式因缺乏语义标签的引导导致所学表征的判别性受限,难以应对复杂的非协同目标的干扰。为了解决这一问题,提出一种新的场景结构知识增强的CoSOD模型SSKNet。SSKNet利用大模型mPlug构建目标间场景结构语义关系并通过分割一切模型(SAM)将这种结构语义关系转移到最终的协同显著性结果中。具体来说:首先,为了学习语义知识,引入图像场景理解大模型,对图像组中的图像进行理解,并得到表示结构语义的文本描述组,这些文本描述组以文本的形式描述图像的显著内容;接着,为了获取协同显著信息,设计协同提示提取(CoPE)模块,通过在一组描述文本中使用协同注意力机制获取协同显著文本;最后,为了将协同显著文本转化为协同显著掩码,引入SAM,将协同显著文本以文本提示的方式引导SAM分割协同显著目标,获取最终的协同显著检测掩码。在3个公开数据集CoSal2015、CoCA和CoSOD3k上的实验结果表明,SSKNet模型的综合评估指标Fβ的取值分别为0.910、0.750和0.887,达到了先进水平。 展开更多
关键词 场景结构知识 大模型 分割一切模型 协同显著性目标检测 深度学习
在线阅读 下载PDF
基于深度学习的RGB-D图像显著性目标检测前沿进展
3
作者 黄年昌 杨阳 +1 位作者 张强 韩军功 《计算机学报》 北大核心 2025年第2期284-316,共33页
显著性目标检测是计算机视觉领域的基础问题之一,旨在对图像中最吸引人注意的目标进行检测和分割。随着深度学习技术的发展,基于RGB(Red-Green-Blue)图像的显著性目标检测算法取得了巨大进步,在简单场景下已经取得较为满意的结果。然而... 显著性目标检测是计算机视觉领域的基础问题之一,旨在对图像中最吸引人注意的目标进行检测和分割。随着深度学习技术的发展,基于RGB(Red-Green-Blue)图像的显著性目标检测算法取得了巨大进步,在简单场景下已经取得较为满意的结果。然而,局限于可见光相机的成像能力,RGB图像易受到光照条件的影响,且无法捕捉场景的三维空间信息。相应地,基于RGB图像的显著性目标检测算法通常难以在一些复杂场景下取得较好的检测效果。近年来,随着深度成像技术不断发展和硬件成本不断降低,深度相机得到了广泛应用。其捕获的场景空间信息,与可见光图像获取的场景细节信息相互补充,有助于提升复杂场景下显著性目标检测性能。因此,RGB-深度(RGB-Depth,RGB-D)图像显著性目标检测引起了学者广泛研究。本文对近期基于深度学习的RGB-D图像显著性目标检测算法进行了整理和分析。首先,分析了多模态RGB-D图像显著性目标检测所面临的关键问题,并以此对现有算法解决这些关键问题的主要思路和方法进行了总结和梳理。然后,介绍了用于RGB-D图像显著性目标检测算法研究的主流数据集和常用性能评价指标,并对各类主流模型进行了定量比较和定性分析。最后,本文进一步分析了RGB-D图像显著性目标检测领域有待解决的问题,同时对今后可能的研究趋势进行了展望。 展开更多
关键词 显著性目标检测 RGB图像 深度图像 深度学习 多模态图像处理
在线阅读 下载PDF
RGB深度图像显著性目标检测方法设计
4
作者 王雨夕 徐杨 袁旭祥 《液晶与显示》 北大核心 2025年第4期607-616,共10页
为了高效利用深度特征信息辅助显著性检测,实现对不同尺度特征信息的融合,本文提出了一种基于CDINet算法改进的RGB-D图像显著性目标检测算法。首先,添加了多尺度特征融合模块用来加强编码器和解码器之间特征信息的传输,有效减少浅层特... 为了高效利用深度特征信息辅助显著性检测,实现对不同尺度特征信息的融合,本文提出了一种基于CDINet算法改进的RGB-D图像显著性目标检测算法。首先,添加了多尺度特征融合模块用来加强编码器和解码器之间特征信息的传输,有效减少浅层特征丢失,通过辅助解码器的跳跃连接获得更多的显著物体的特征信息。接着,在CDINet的网络结构尾部连接了一个循环注意力模块,通过使用面向记忆的场景理解功能,逐渐优化局部细节。最后,对损失函数进行调整,使用一致性增强损失(CEL)处理因为不同尺度特征融合产生的空间一致性等问题,并在不增加参数的情况下均匀突出显著区域。实验结果表明,改进后的模型与原CDINet算法模型相比,在LFSD数据集上的F-measure提高了0.6%,MAE下降了0.4%;在STERE数据集上的F-measure提高了0.4%,S-measure提升了0.5%。相对于其他算法模型,本模型基本满足检测性能更好、适应性更高等要求。 展开更多
关键词 显著性目标检测 计算机视觉 边缘检测 深度学习
在线阅读 下载PDF
基于无源领域自适应的低光照显著性目标检测
5
作者 李书玮 黄正翔 +5 位作者 胡云 刘兴 卢笑 郭畅 吴成中 王耀南 《计算机工程》 北大核心 2025年第4期75-84,共10页
为了解决低光照条件下校园环境等场景监控摄像头图像质量和监控效果受影响而带来的安全问题,提出一种低光照显著性目标检测(SOD)方法,以提高低光照条件下目标检测能力。针对低光照条件下图像的显著性特征弱化和缺乏大规模标注数据的问题... 为了解决低光照条件下校园环境等场景监控摄像头图像质量和监控效果受影响而带来的安全问题,提出一种低光照显著性目标检测(SOD)方法,以提高低光照条件下目标检测能力。针对低光照条件下图像的显著性特征弱化和缺乏大规模标注数据的问题,提出一种无源领域自适应(SFDA)方法,将正常光照图像(源域)下训练的模型知识迁移至低光照条件图像(目标域)。该方法采用两阶段策略:在第一阶段,利用源域模型生成低光照图像的伪标签,为提高伪标签生成的质量,提出集合熵最小化损失抑制高熵区域,同时引入选择性投票方法来增强伪标签的生成;在第二阶段,采用基于增强引导一致性的教师-学生网络自训练方法对显著图进行精细化,进一步提高检测结果的精度。在SOD-LL数据集上的实验结果表明,所提出的方法在低光照场景下总体性能优于其他图像显著性检测方法,相较于正常光照的SOD方法,其平均绝对误差(MAE)降低15.15%,加权F1值(wFm)提高4.73%。 展开更多
关键词 显著性目标检测 低光照场景 无源领域自适应 伪标签 教师-学生网络 集合熵最小化 选择投票
在线阅读 下载PDF
HDF+:一种新的RGB-D显著性目标检测网络模型
6
作者 吴映霓 闫河 +1 位作者 姜彬 蔡朝安 《小型微型计算机系统》 北大核心 2025年第7期1645-1651,共7页
用于显著性目标检测的HDFNet模型在其编码阶段和解码阶段均缺乏有效的特征信息表示能力,分别由于其编码阶段仅把RGB特征和Depth特征进行简单相加,且解码阶段在多次上采样中缺乏有效监督,从而导致检测精度有待进一步提升.本文提出了一种... 用于显著性目标检测的HDFNet模型在其编码阶段和解码阶段均缺乏有效的特征信息表示能力,分别由于其编码阶段仅把RGB特征和Depth特征进行简单相加,且解码阶段在多次上采样中缺乏有效监督,从而导致检测精度有待进一步提升.本文提出了一种新的RGB-D显著性目标检测模型HDF+.首先,在编码阶段构建了非对称融合模块,该模块通过非对称的方式融合RGB特征和Depth特征,有效利用RGB特征的语义信息及Depth特征的空间细节信息;其次,在解码阶段采用多个深度监督模块对网络进行监督训练,并在各监督层引入IoU损失作为前景损失替换原来的区域增强损失.对比实验结果表明,本文的方法优于主流的RGB-D显著性目标检测方法. 展开更多
关键词 RGB-D 显著性目标检测 非对称融合 深度监督
在线阅读 下载PDF
边缘信息增强的显著性目标检测网络 被引量:4
7
作者 赵卫东 王辉 柳先辉 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期293-302,共10页
针对显著性目标检测任务中识别结果边缘模糊的问题,提出了一种能够充分利用边缘信息增强边缘像素置信度的新模型。该网络主要有两个创新点:设计三重注意力模块,利用预测图的特点直接生成前景、背景和边缘注意力,并且生成注意力权重的过... 针对显著性目标检测任务中识别结果边缘模糊的问题,提出了一种能够充分利用边缘信息增强边缘像素置信度的新模型。该网络主要有两个创新点:设计三重注意力模块,利用预测图的特点直接生成前景、背景和边缘注意力,并且生成注意力权重的过程不增加任何参数;设计边缘预测模块,在分辨率较高的网络浅层进行有监督的边缘预测,并与网络深层的显著图预测融合,细化了边缘。在6种常用公开数据集上用定性和定量的方法评估了该模型,并且与其他模型进行充分对比,证明设计的新模型能够取得最优的效果。此外,该模型参数量为30.28 M,可以在GTX 1080 Ti显卡上达到31帧·s^(-1)的预测速度。 展开更多
关键词 显著性目标检测 注意力机制 边缘检测 深度卷积神经网络
在线阅读 下载PDF
基于特征注意力提纯的显著性目标检测模型
8
作者 白雪飞 申悟呈 王文剑 《计算机科学》 CSCD 北大核心 2024年第5期125-133,共9页
近年来,显著性目标检测技术取得了巨大进展,其中如何选择并有效集成多尺度特征扮演了重要角色。针对现有特征集成方法可能导致的信息冗余问题,提出了一种基于特征注意力提纯的显著性检测模型。首先,在解码器中采用一个全局特征注意力引... 近年来,显著性目标检测技术取得了巨大进展,其中如何选择并有效集成多尺度特征扮演了重要角色。针对现有特征集成方法可能导致的信息冗余问题,提出了一种基于特征注意力提纯的显著性检测模型。首先,在解码器中采用一个全局特征注意力引导模块(GAGM)对带有语义信息的深层特征进行注意力机制处理,得到全局上下文信息;然后,通过全局引导流将其送入解码器各层进行监督训练;最后,利用多尺度特征融合模块(FAM)对编码器提取出的多尺度特征与全局上下文信息进行有效集成,并在网格状特征提纯模块(MFPM)中进行进一步细化,以生成清晰、完整的显著图。在5个公开数据集上进行实验,结果表明,所提模型优于现有的其他显著性检测方法,并且处理速度快,当处理320×320尺寸的图像时,能以30帧以上的速度运行。 展开更多
关键词 显著性目标检测 注意力机制 多尺度特征融合 特征选择 网格状特征提纯
在线阅读 下载PDF
集成多种上下文与混合交互的显著性目标检测 被引量:2
9
作者 夏晨星 陈欣雨 +4 位作者 孙延光 葛斌 方贤进 高修菊 张艳 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第7期2918-2931,共14页
显著性目标检测目的是识别和分割图像中的视觉显著性目标,它是计算机视觉任务及其相关领域的重要研究内容之一。当下基于全卷积网络(FCNs)的显著性目标检测方法已经取得了不错的性能,然而现实场景中的显著性目标类型多变且尺寸不固定,... 显著性目标检测目的是识别和分割图像中的视觉显著性目标,它是计算机视觉任务及其相关领域的重要研究内容之一。当下基于全卷积网络(FCNs)的显著性目标检测方法已经取得了不错的性能,然而现实场景中的显著性目标类型多变且尺寸不固定,这使得准确检测并完整分割出显著性目标仍然是一个巨大的挑战。为此,该文提出集成多种上下文和混合交互的显著性目标检测方法,通过利用密集上下文信息探索模块和多源特征混合交互模块来高效预测显著性目标。密集上下文信息探索模块采用空洞卷积、不对称卷积和密集引导连接渐进地捕获具有强关联性的多尺度和多感受野上下文信息,通过集成这些信息来增强每个初始多层级特征的表达能力。多源特征混合交互模块包含多种特征聚合操作,可以自适应交互来自多层级特征中的互补性信息,以生成用于准确预测显著性图的高质量特征表示。此方法在5个公共数据集上进行了性能测试,实验结果表明,该文方法在不同的评估指标下与19种基于深度学习的显著性目标检测方法相比取得优越的预测性能。 展开更多
关键词 计算机视觉 显著性目标检测 全卷积网络 上下文信息
在线阅读 下载PDF
弱监督显著性目标检测研究进展 被引量:1
10
作者 于俊伟 郭园森 +1 位作者 张自豪 母亚双 《计算机工程与应用》 CSCD 北大核心 2024年第10期1-15,共15页
显著性目标检测旨在准确检测和定位图像或视频中最引人注目的目标或区域,为更好地进行目标识别和场景分析提供帮助。尽管全监督显著性检测方法取得一定成效,但获取大规模像素级标注数据集十分困难且昂贵。弱监督检测方法利用相对容易获... 显著性目标检测旨在准确检测和定位图像或视频中最引人注目的目标或区域,为更好地进行目标识别和场景分析提供帮助。尽管全监督显著性检测方法取得一定成效,但获取大规模像素级标注数据集十分困难且昂贵。弱监督检测方法利用相对容易获取的图像级标签或带噪声的弱标签训练模型,在实际应用中表现出良好效果。全面对比了全监督和弱监督显著性检测的主流方法和应用场景,重点分析了常用的弱标签数据标注方法及其对显著目标检测的影响。综述了弱监督条件下显著目标检测方法的最新研究进展,并在常用数据集上对不同弱监督方法的性能进行了比较。最后探讨了弱监督显著性检测在农业、医学和军事等特殊领域的应用前景,指出了该研究领域存在的问题及未来发展趋势。 展开更多
关键词 显著性目标检测 全监督学习 弱监督学习
在线阅读 下载PDF
基于特征重聚焦和精细化的遥感显著性目标检测 被引量:1
11
作者 朱海鹏 张宝华 +2 位作者 李永翔 徐利权 温海英 《传感器与微系统》 CSCD 北大核心 2024年第7期157-160,共4页
为了提升网络对特征的表征,提出一种基于特征重聚焦和精细化的光学遥感显著目标检测算法。利用相邻层特征交互捕获上下文语义互补信息,并通过膨胀卷积调节感受野提取信息的范围,完成初次特征聚焦。再将注意机制作用于深层特征,组成位置... 为了提升网络对特征的表征,提出一种基于特征重聚焦和精细化的光学遥感显著目标检测算法。利用相邻层特征交互捕获上下文语义互补信息,并通过膨胀卷积调节感受野提取信息的范围,完成初次特征聚焦。再将注意机制作用于深层特征,组成位置引导模块,增强对显著性特征的关注,完成特征重聚焦。最后,通过浅层特征获得显著特征注意图和反注意图,引导网络进一步挖掘高置信度显著区域和低置信度背景区域的信息,精细化优化后的特征。采用EORSSD和ORSSD 2个公开数据集进行实验与评估,以证明算法的有效性。 展开更多
关键词 光学遥感图像 显著性目标检测 相邻上下文协调 特征精细化 注意力机制
在线阅读 下载PDF
基于深度学习的显著性目标检测综述 被引量:6
12
作者 孙涵 刘译善 林昱涵 《数据采集与处理》 CSCD 北大核心 2023年第1期21-50,共30页
显著性目标检测通过模仿人的视觉感知系统,寻找最吸引视觉注意的目标,已被广泛应用于图像理解、语义分割、目标跟踪等计算机视觉任务中。随着深度学习技术的快速发展,显著性目标检测研究取得了巨大突破。本文总结了近5年相关工作,全面... 显著性目标检测通过模仿人的视觉感知系统,寻找最吸引视觉注意的目标,已被广泛应用于图像理解、语义分割、目标跟踪等计算机视觉任务中。随着深度学习技术的快速发展,显著性目标检测研究取得了巨大突破。本文总结了近5年相关工作,全面回顾了3类不同模态的显著性目标检测任务,包括基于RGB图像、基于RGB-D/T(Depth/Thermal)图像以及基于光场图像的显著性目标检测。首先分析了3类研究分支的任务特点,并概述了研究难点;然后就各分支的研究技术路线和优缺点进行阐述和分析,并简单介绍了3类研究分支常用的数据集和主流的评价指标。最后,对基于深度学习的显著性目标检测领域未来研究方向进行了探讨。 展开更多
关键词 深度学习 RGB图像显著性目标检测 RGB-D/T图像显著性目标检测 光场图像显著性目标检测
在线阅读 下载PDF
双特征流融合和边界感知的显著性目标检测 被引量:2
13
作者 杨鑫 朱恒亮 毛国君 《计算机工程与应用》 CSCD 北大核心 2024年第10期227-236,共10页
显著性目标检测是计算机视觉领域的热门研究方向之一,许多基于深度学习的检测算法虽然已经取得了显著的成果,但是仍然存在待测目标漏检误检和边界模糊等问题。针对这些问题提出了一种基于双特征流融合和边界感知的目标检测算法,通过改... 显著性目标检测是计算机视觉领域的热门研究方向之一,许多基于深度学习的检测算法虽然已经取得了显著的成果,但是仍然存在待测目标漏检误检和边界模糊等问题。针对这些问题提出了一种基于双特征流融合和边界感知的目标检测算法,通过改变输入图像尺寸来丰富多尺度信息,并自顶向下逐层聚合特征得到精细的预测结果。首先将输入图像调整为两种不同分辨率分别送入编码器,提取丰富的多层级特征形成双特征流;其次将双特征流自顶向下逐层融合,生成由粗到细的显著图;最后构建了边界感知结构,凭借上下文语义信息的指导生成精细的物体轮廓。在五个公开数据集上进行了大量实验,实验结果表明,所提算法在结构相似性(Sm)等多个指标上取得了更高的检测精度,生成的显著图目标完整且边缘清晰。 展开更多
关键词 显著性目标检测 全卷积神经网络 多尺度学习 双特征流融合 边界感知
在线阅读 下载PDF
基于BC^(2)FNet网络的RGB-D显著性目标检测
14
作者 王峰 程咏梅 《西北工业大学学报》 EI CAS CSCD 北大核心 2024年第6期1135-1143,共9页
面对复杂的场景图像,深度信息的引入可以大大提高显著性目标检测的性能。然而,神经网络的上采样和下采样操作会模糊显著图中目标的边界,从而降低显著性目标检测性能。针对此问题,提出了一种基于边界驱动跨模态跨层融合网络(B^(C)2FNet)... 面对复杂的场景图像,深度信息的引入可以大大提高显著性目标检测的性能。然而,神经网络的上采样和下采样操作会模糊显著图中目标的边界,从而降低显著性目标检测性能。针对此问题,提出了一种基于边界驱动跨模态跨层融合网络(B^(C)2FNet)的RGB-D显著性目标检测方法。该网络在跨模态和跨层融合中分别加入边界信息引导来保持目标区域。设计了边界生成模型,分别从RGB和深度模态的低层特征中提取2种边界信息;设计边界驱动的特征选择模块,在RGB与深度模态融合过程中,聚焦重要特征信息并保留边界细节;提出了一种边界驱动的跨层融合模块,在相邻层的上采样融合过程中加入2种边界信息。通过将该模块嵌入到自顶向下的信息融合流中,预测出包含精确目标和清晰边界的显著性图。在5种标准RGB-D数据集上进行仿真实验,结果证明所提出的模型具有较好的性能。 展开更多
关键词 显著性目标检测 边界驱动 跨模态融合 跨层融合
在线阅读 下载PDF
跨模态交互融合与全局感知的RGB-D显著性目标检测 被引量:1
15
作者 孙福明 胡锡航 +2 位作者 武景宇 孙静 王法胜 《软件学报》 EI CSCD 北大核心 2024年第4期1899-1913,共15页
近年来,RGB-D显著性检测方法凭借深度图中丰富的几何结构和空间位置信息,取得了比RGB显著性检测模型更好的性能,受到学术界的高度关注.然而,现有的RGB-D检测模型仍面临着持续提升检测性能的需求.最近兴起的Transformer擅长建模全局信息... 近年来,RGB-D显著性检测方法凭借深度图中丰富的几何结构和空间位置信息,取得了比RGB显著性检测模型更好的性能,受到学术界的高度关注.然而,现有的RGB-D检测模型仍面临着持续提升检测性能的需求.最近兴起的Transformer擅长建模全局信息,而卷积神经网络(CNN)擅长提取局部细节.因此,如何有效结合CNN和Transformer两者的优势,挖掘全局和局部信息,将有助于提升显著性目标检测的精度.为此,提出一种基于跨模态交互融合与全局感知的RGB-D显著性目标检测方法,通过将Transformer网络嵌入U-Net中,从而将全局注意力机制与局部卷积结合在一起,能够更好地对特征进行提取.首先借助U-Net编码-解码结构,高效地提取多层次互补特征并逐级解码生成显著特征图.然后,使用Transformer模块学习高级特征间的全局依赖关系增强特征表示,并针对输入采用渐进上采样融合策略以减少噪声信息的引入.其次,为了减轻低质量深度图带来的负面影响,设计一个跨模态交互融合模块以实现跨模态特征融合.最后,5个基准数据集上的实验结果表明,所提算法与其他最新的算法相比具有显著优势. 展开更多
关键词 显著性目标检测 跨模态 全局注意力机制 RGB-D检测模型
在线阅读 下载PDF
渐进式特征增强的弱监督显著性目标检测
16
作者 李沼洁 朱恒亮 +1 位作者 毛国君 杨鑫 《计算机工程》 CAS CSCD 北大核心 2024年第12期233-244,共12页
针对多数弱监督显著性检测方法在复杂场景下容易出现目标结构缺损、边界粗糙等问题,提出一种渐进式特征增强的弱监督显著性检测算法。首先针对显著目标结构不完整问题,设计一种渐进式特征增强机制,主要包括双流语义增强模块和层次化自... 针对多数弱监督显著性检测方法在复杂场景下容易出现目标结构缺损、边界粗糙等问题,提出一种渐进式特征增强的弱监督显著性检测算法。首先针对显著目标结构不完整问题,设计一种渐进式特征增强机制,主要包括双流语义增强模块和层次化自适应特征聚合模块,通过复用这种机制可以捕获更丰富的图像特征;其次为获取清晰完整的目标边缘,提出边缘引导模块,可以生成高质量的显著目标边缘图;最后将得到的边缘对显著区域预测网络进行指导,以生成结构完整且边界平滑的检测结果。在5个公开数据集上的实验结果表明,相比经典的WSSA算法,该算法在PASCAL-S数据集上平均绝对误差(MAE)降低了21.32%,F-measure值提高了6.27%,优于大多数先进的弱监督显著性目标检测算法。 展开更多
关键词 弱监督 显著性目标检测 渐进式 特征聚合 边缘引导
在线阅读 下载PDF
基于分层解码和渐进融合的快速显著性目标检测
17
作者 杨爱萍 王子麒 +1 位作者 程思萌 刘彦 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2024年第7期721-728,共8页
现有显著性目标检测方法大多只关心模型的检测精度,容易忽略模型的编解码效率,导致网络运行速度较慢.针对上述问题,本文提出一种基于分层解码和渐进融合的快速显著性目标检测网络,并分别设计语义提取模块、空间增强模块和边界提取模块,... 现有显著性目标检测方法大多只关心模型的检测精度,容易忽略模型的编解码效率,导致网络运行速度较慢.针对上述问题,本文提出一种基于分层解码和渐进融合的快速显著性目标检测网络,并分别设计语义提取模块、空间增强模块和边界提取模块,对编码器提取到的多尺度特征进行分层筛选和高效解码.其中,语义提取模块可准确定位显著性目标的整体区域,空间增强模块可完整保留显著性目标的空域信息,边界提取模块可增强显著性目标的边界轮廓.由于不同层级特征的感受野和分辨率不同,本文设计了邻间聚合模块和边界细化模块,对筛选后的特征进行渐进式融合并逐步细化得到最后的显著性预测图.实验结果表明,所提方法不仅能够得到边界清晰、区域完整的显著性预测图,还能显著提升模型的编解码效率,快速检测显著性目标,在ECSSD和HKU-IS数据集上的最大值F max分别为0.947和0.936,优于其他方法. 展开更多
关键词 显著性目标检测 分层解码 渐进融合 邻间聚合 边界细化
在线阅读 下载PDF
基于时空信息的轻量视频显著性目标检测网络
18
作者 徐松 张文博 王一帆 《计算机应用》 CSCD 北大核心 2024年第7期2192-2199,共8页
现有视频显著性目标检测(VSOD)网络面临2个问题:一是在捕获时间信息时计算成本过大,导致网络难以在移动端实际应用;二是网络泛化能力较弱,难以处理视频中诸如遮挡、运动模糊等挑战性场景。因此,提出一种基于动态滤波器和对比学习思想的... 现有视频显著性目标检测(VSOD)网络面临2个问题:一是在捕获时间信息时计算成本过大,导致网络难以在移动端实际应用;二是网络泛化能力较弱,难以处理视频中诸如遮挡、运动模糊等挑战性场景。因此,提出一种基于动态滤波器和对比学习思想的轻量视频显著性目标检测网络。首先,对连续帧的每帧图像进行粗略的前景特征点采样并进行相似度矩阵的计算,利用相似度矩阵进行加权从而滤除存在的噪声特征;其次,用滤波后的前景特征生成动态滤波器参数,对原始特征图执行卷积操作以提取前景物体;同时在训练阶段设计了一个对比学习模块帮助网络学习,在推理阶段并不会引入额外的计算量。在三个数据集DAVIS、DAVSOD和VOS上进行了广泛实验,实验结果表明,所提网络相较于DCFNet(Dynamic Context-sensitive Filtering Network for video salient object detection),在Fmeasure、S-measure以及平均绝对误差(MAE)3个指标上性能接近,帧率从28 frame/s提升到38 frame/s,提升了35.7%,同时网络参数量仅有15.6×10^(6),更有利于实际应用中在边缘侧进行部署。 展开更多
关键词 视频显著性目标检测 动态滤波器 注意力机制 对比学习 深度学习
在线阅读 下载PDF
一种基于词袋模型的新的显著性目标检测方法 被引量:17
19
作者 杨赛 赵春霞 徐威 《自动化学报》 EI CSCD 北大核心 2016年第8期1259-1273,共15页
提出一种基于词袋模型的新的显著性目标检测方法.该方法首先利用目标性计算先验概率显著图,然后在图像的超像素区域内建立词袋模型,并基于此特征计算条件概率显著图,最后根据贝叶斯推断将先验概率和条件概率显著图进行合成.在ASD、SED以... 提出一种基于词袋模型的新的显著性目标检测方法.该方法首先利用目标性计算先验概率显著图,然后在图像的超像素区域内建立词袋模型,并基于此特征计算条件概率显著图,最后根据贝叶斯推断将先验概率和条件概率显著图进行合成.在ASD、SED以及SOD显著性目标公开数据库上与目前16种主流方法进行对比,实验结果表明本文方法具有更高的精度和更好的查全率,能够一致高亮地凸显图像中的显著性目标. 展开更多
关键词 词袋模型 目标 贝叶斯模型 视觉显著 显著性目标检测
在线阅读 下载PDF
利用层次先验估计的显著性目标检测 被引量:21
20
作者 徐威 唐振民 《自动化学报》 EI CSCD 北大核心 2015年第4期799-812,共14页
有效的显著性目标检测在计算机视觉领域一直是具有挑战性的问题.本文首先对图像进行树滤波处理,采用Quick shift方法将其分解为超像素,再通过仿射传播聚类把超像素聚集为代表性的类.与以往方法不同,本文提出根据各类中拥有的超像素的类... 有效的显著性目标检测在计算机视觉领域一直是具有挑战性的问题.本文首先对图像进行树滤波处理,采用Quick shift方法将其分解为超像素,再通过仿射传播聚类把超像素聚集为代表性的类.与以往方法不同,本文提出根据各类中拥有的超像素的类内和类间的空间离散程度及其位于图像边界的数目,自适应地估计先验背景,并提取条状背景区域;由目标性度量(Objectness measure)粗略地描述前景范围后,通过与各类之间的空间交互信息,估计先验前景;再经过连通区域优化前景与背景信息.最后,综合考虑各超像素与先验背景和前景在CIELab颜色空间的距离,并进行显著性中心加权,得到显著图.在MSRA-1000和复杂的SOD数据库上的实验结果表明,本文算法能准确、完整地检测出显著性目标,优于21种State-of-the-art算法,包括基于部分类似原理的方法. 展开更多
关键词 显著性目标检测 层次估计 先验背景和前景 显著中心加权 仿射传播聚类
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部