The auto-evolved ultrafine copper powders were synlhesized via a novel electrodeposition route performed by ultrasonic dispersion of the electrolyte. The properties of the samples obtained were characterized by X-ray ...The auto-evolved ultrafine copper powders were synlhesized via a novel electrodeposition route performed by ultrasonic dispersion of the electrolyte. The properties of the samples obtained were characterized by X-ray powder diffractometry (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and laser size distribution analyzer (SL) respectively. The formation mechanisms of the powders and the efficiency of the elctrodeposition were discussed. The results show that the as-prepared powders are high-purity copper nanoparticles with the fcc structure taking a mixture of fishbone-like and irregular shapes When the concentration of Cu^2+ increases from 0.03 to 0.09 mol/L, the average size of copper particles increases from 0.92 to 1.80 μm, and current efficiency of electrodeposition linearly changes from 66.5% to 91.3%.展开更多
Magnesium oxysulfate (MgSO4·5Mg(OH)2·2H2O) flake powders with an average diameter of 2 ~tm and a thickness of 0.052 μm were prepared using magnesium sulfate and sodium hydroxide as raw materials by hydr...Magnesium oxysulfate (MgSO4·5Mg(OH)2·2H2O) flake powders with an average diameter of 2 ~tm and a thickness of 0.052 μm were prepared using magnesium sulfate and sodium hydroxide as raw materials by hydrothermal synthesis process. The composition, morphology and structural features of the hydrothermal products were examined with X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The experimental results indicate that in the conditions of n(NaOH)/n(MgSO4) of 1.25, the dosage of w(Na3PO4) crystal additives of 1.0% w(MgSO4), stirring for 5 h at 180 ℃, the morphology of MgSO4·5Mg(OH)2·2H2O products is flaky and laminar, which is a kind of complex magnesium singlecrystal. The recycling of MgSO4 mother liquor was also investigated to make a full use of the materials and reduce disposal. The results prove that there is no adverse effect on the yield and purity of the products.展开更多
FeCrAl(f)/HA biological functionally gradient materials(FGMs) were successfully fabricated by the hot pressing technique.Scanning electron microscope(SEM),energy dispersive spectrometer(EDS) and bending strength test ...FeCrAl(f)/HA biological functionally gradient materials(FGMs) were successfully fabricated by the hot pressing technique.Scanning electron microscope(SEM),energy dispersive spectrometer(EDS) and bending strength test machine were utilized to characterize the microstructure,component,mechanical properties and the formation of the Ca-deficient apatite on the surface of these materials.The results indicate that an asymmetrical FeCrAl(f)/HA FGM,consolidating powders prepared by mixing HA with 3%–15%(volume fraction) is successfully prepared.Both of the matrix and FeCrAl fiber are integrated very tightly and bite into each other very deeply.And counter diffusion takes place to some extent in two phase interfaces.The elemental compositions of the FeCrAl(f)/HA FGM change progressively.Ca and P contents increase gradually with immersion time increasing,and thereafter approach equilibrium.The bone-like apatite layer forms on the materials surface,which possesses benign bioactivity,and the favorable biocompatibility can provide potential firm fixation between FeCrAl(f)/HA asymmetrical FGM implants and human bone.展开更多
The synthesis of high purity intermetallic FeAI nanoparticles using the flow-levitation (FL) method was reported. Iron and aluminium droplets were levitated stably at about 2 230℃. The morphology, clystal structure...The synthesis of high purity intermetallic FeAI nanoparticles using the flow-levitation (FL) method was reported. Iron and aluminium droplets were levitated stably at about 2 230℃. The morphology, clystal structure and chemical composition of FeAI nanoparticles were investigated by transmission electron microscopy (TEM), high-resolution TEM, X-ray diffraction and energy dispersive spectrometry. The results show that the average particle size of these nanoparticles is about 34.5 nm. Measurements of the d-spacing from X-ray diffraction and electron diffraction studies confirm that the intermetallic nanoparticles have the same crystal structure (B2) as the bulk FeA1. A thin oxidation coating is formed around the particles when being exposed to air. Based on the XPS measurements, the surface coating of the FeAI nanoparticles is composed of Fe2O3 and FeAl2O4. Besides, hysteresis curve reveals that saturation magnetization (Ms) of FeA1 is 1.66 A/m2, and the coercivity is about 1.214×10^3 A/re.展开更多
基金Project(08JJ3104) support by Hunan Provincial Natural Science Foundation of China
文摘The auto-evolved ultrafine copper powders were synlhesized via a novel electrodeposition route performed by ultrasonic dispersion of the electrolyte. The properties of the samples obtained were characterized by X-ray powder diffractometry (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and laser size distribution analyzer (SL) respectively. The formation mechanisms of the powders and the efficiency of the elctrodeposition were discussed. The results show that the as-prepared powders are high-purity copper nanoparticles with the fcc structure taking a mixture of fishbone-like and irregular shapes When the concentration of Cu^2+ increases from 0.03 to 0.09 mol/L, the average size of copper particles increases from 0.92 to 1.80 μm, and current efficiency of electrodeposition linearly changes from 66.5% to 91.3%.
基金Project(50704036) supported by the National Natural Science Foundation of ChinaProject(08JJ3027) supported by the Natural Science Foundation of Hunan Province, China
文摘Magnesium oxysulfate (MgSO4·5Mg(OH)2·2H2O) flake powders with an average diameter of 2 ~tm and a thickness of 0.052 μm were prepared using magnesium sulfate and sodium hydroxide as raw materials by hydrothermal synthesis process. The composition, morphology and structural features of the hydrothermal products were examined with X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The experimental results indicate that in the conditions of n(NaOH)/n(MgSO4) of 1.25, the dosage of w(Na3PO4) crystal additives of 1.0% w(MgSO4), stirring for 5 h at 180 ℃, the morphology of MgSO4·5Mg(OH)2·2H2O products is flaky and laminar, which is a kind of complex magnesium singlecrystal. The recycling of MgSO4 mother liquor was also investigated to make a full use of the materials and reduce disposal. The results prove that there is no adverse effect on the yield and purity of the products.
基金Project(51274247)supported by the National Natural Science Foundation of ChinaProject(2012BAE06B00)supported by the National High Technology Research and Development Program to China+1 种基金Project(2011QNZT046)supported by the Fundamental Research Funds of Central South Universities of ChinaProject supported by Hunan Postdoctoral Scientific Program,China
文摘FeCrAl(f)/HA biological functionally gradient materials(FGMs) were successfully fabricated by the hot pressing technique.Scanning electron microscope(SEM),energy dispersive spectrometer(EDS) and bending strength test machine were utilized to characterize the microstructure,component,mechanical properties and the formation of the Ca-deficient apatite on the surface of these materials.The results indicate that an asymmetrical FeCrAl(f)/HA FGM,consolidating powders prepared by mixing HA with 3%–15%(volume fraction) is successfully prepared.Both of the matrix and FeCrAl fiber are integrated very tightly and bite into each other very deeply.And counter diffusion takes place to some extent in two phase interfaces.The elemental compositions of the FeCrAl(f)/HA FGM change progressively.Ca and P contents increase gradually with immersion time increasing,and thereafter approach equilibrium.The bone-like apatite layer forms on the materials surface,which possesses benign bioactivity,and the favorable biocompatibility can provide potential firm fixation between FeCrAl(f)/HA asymmetrical FGM implants and human bone.
基金Project(10804101) supported by the National Natural Science Foundation of China
文摘The synthesis of high purity intermetallic FeAI nanoparticles using the flow-levitation (FL) method was reported. Iron and aluminium droplets were levitated stably at about 2 230℃. The morphology, clystal structure and chemical composition of FeAI nanoparticles were investigated by transmission electron microscopy (TEM), high-resolution TEM, X-ray diffraction and energy dispersive spectrometry. The results show that the average particle size of these nanoparticles is about 34.5 nm. Measurements of the d-spacing from X-ray diffraction and electron diffraction studies confirm that the intermetallic nanoparticles have the same crystal structure (B2) as the bulk FeA1. A thin oxidation coating is formed around the particles when being exposed to air. Based on the XPS measurements, the surface coating of the FeAI nanoparticles is composed of Fe2O3 and FeAl2O4. Besides, hysteresis curve reveals that saturation magnetization (Ms) of FeA1 is 1.66 A/m2, and the coercivity is about 1.214×10^3 A/re.