期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合视觉中心机制和并行补丁感知的遥感图像检测算法 被引量:5
1
作者 梁礼明 陈康泉 +2 位作者 王成斌 冯耀 龙鹏威 《光电工程》 CAS CSCD 北大核心 2024年第7期72-83,共12页
针对遥感图像存在复杂背景干扰、目标多尺度差异和微小目标提取难的问题,本文基于YOLOv7-tiny模型提出一种融合视觉中心机制和并行补丁感知的遥感图像检测算法。该算法一是引入显式视觉中心机制,构建像素点间的长距离依赖关系,丰富图像... 针对遥感图像存在复杂背景干扰、目标多尺度差异和微小目标提取难的问题,本文基于YOLOv7-tiny模型提出一种融合视觉中心机制和并行补丁感知的遥感图像检测算法。该算法一是引入显式视觉中心机制,构建像素点间的长距离依赖关系,丰富图像的整体语义信息,同时提升对目标纹理的提取性能;二是改进并行补丁感知模块,调整特征提取感受野,以适应不同目标尺度;三是设计多尺度特征融合模块,实现对多层特征的高效融合,提升模型推理速度。在公共数据集RSOD上进行实验,所提算法的准确率、召回率和平均准确率均值相较YOLOv7-tiny分别提升1.5%、2.4%和2.4%,此外在NWPUVHR-10和DOTA数据集上进行泛化性验证,结果表明本文算法具备较强的泛化性能。通过与不同算法对比分析,进一步体现本文算法性能的优越性。 展开更多
关键词 遥感图像 目标检测 YOLOv7-tiny 显式视觉中心机制 并行补丁感知
在线阅读 下载PDF
基于ESC-TransUNet网络的脑出血CT图像分割
2
作者 谭佳慧 文琛言 +1 位作者 黄巍 胡凯 《计算机科学》 北大核心 2025年第S1期99-107,共9页
针对脑出血CT图像处理中遇到的出血区域空间位置、形状、尺寸多变性以及与周围组织强度值相近导致边界难以确定等挑战,提出了一种改进TransUNet的图像分割模型(ESC-TransUNet)。该模型首先在上采样前增添了显式视觉中心(Explicit Visual... 针对脑出血CT图像处理中遇到的出血区域空间位置、形状、尺寸多变性以及与周围组织强度值相近导致边界难以确定等挑战,提出了一种改进TransUNet的图像分割模型(ESC-TransUNet)。该模型首先在上采样前增添了显式视觉中心(Explicit Visual Center,EVC),能够捕获图像中远距离像素的关联程度,并保留输入图像中局部边角区域的详细信息,有助于有效提取出血区域特征。其次,在编码器阶段引入了注意力混洗机制(Shuffle Attention,SA),有效地学习了出血区域与背景间的微小差异,从而提高了分割任务的精确度。最后,在解码器阶段采用CBM2结构促进信息更有效传递,增强模型泛化能力和准确性。在脑出血公开数据集Physionet(PHY)上进行了大量实验,结果表明,所提方法超过了其他9种主要的分割方法,在脑出血CT图像分割任务中获得了更优异的性能。 展开更多
关键词 深度学习 CT图像 脑出血分割 注意力混洗机制 显式视觉中心
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部