随着空间卫星的广泛使用,射电天文望远镜受到高仰角的干扰越来越多,进一步确定整个天空中卫星干扰源的频率、位置和分布,是有效规划天文观测的重要手段。本文介绍了一种基于时频差对高仰角卫星干扰源定位的方法,即基于时频差信息,将干...随着空间卫星的广泛使用,射电天文望远镜受到高仰角的干扰越来越多,进一步确定整个天空中卫星干扰源的频率、位置和分布,是有效规划天文观测的重要手段。本文介绍了一种基于时频差对高仰角卫星干扰源定位的方法,即基于时频差信息,将干扰源定位解构为时频差联合估计与定位的问题。首先建立用于时频差联合估计的地面接收信号模型,基于四阶最大似然进行到达时间差(time difference of arrival,TDOA)与到达频率差(frequency difference of arrival,FDOA)的联合估计;然后建立干扰源定位模型,根据两步加权最小二乘算法对干扰源进行定位。经过仿真验证,实现了对高仰角快速运动干扰源的定位与轨迹估计,对于300 km高度干扰源的定位误差最小可达到78 m。利用基于联合时频差分析的卫星干扰源定位算法进行射电天文台址无线电环境测量可提升射电望远镜的科学产出,并保障其平稳运行。展开更多
文摘随着空间卫星的广泛使用,射电天文望远镜受到高仰角的干扰越来越多,进一步确定整个天空中卫星干扰源的频率、位置和分布,是有效规划天文观测的重要手段。本文介绍了一种基于时频差对高仰角卫星干扰源定位的方法,即基于时频差信息,将干扰源定位解构为时频差联合估计与定位的问题。首先建立用于时频差联合估计的地面接收信号模型,基于四阶最大似然进行到达时间差(time difference of arrival,TDOA)与到达频率差(frequency difference of arrival,FDOA)的联合估计;然后建立干扰源定位模型,根据两步加权最小二乘算法对干扰源进行定位。经过仿真验证,实现了对高仰角快速运动干扰源的定位与轨迹估计,对于300 km高度干扰源的定位误差最小可达到78 m。利用基于联合时频差分析的卫星干扰源定位算法进行射电天文台址无线电环境测量可提升射电望远镜的科学产出,并保障其平稳运行。