Beipanjiang Bridge is a long-span concrete arch bridges with stiffened skeleton(CABSS)in China.It has a fixed end arch with the span of 445 m and the rise of 100 m.To evaluate the rationality of the construction seque...Beipanjiang Bridge is a long-span concrete arch bridges with stiffened skeleton(CABSS)in China.It has a fixed end arch with the span of 445 m and the rise of 100 m.To evaluate the rationality of the construction sequence and the time-dependent behavior of CABSS,an experimental study of a model bridge was explored.But the measured displacement and stress ratios of arch rib between prototype and model bridge did not subject to linear similarity relation when the time-dependent behavior was considered.So,the three-dimensional finite element models were established,and verified by the measured data.Then,the displacements and stresses of the prototype and model were compared with each other,when the elastic analysis or coupling of temperature and shrinkage,creep effect was considered.Furthermore,a parametric study was studied.The results showed that when the temperature,shrinkage and creep effect of concrete are considered,the finite element analysis results of prototype and model agree well with the measured results.The displacement and stress ratios of prototype and model bridge in construction and bridge completed stage do not present the geometric similarity ratio 7.5 and 1.0,respectively.They are also much influenced by concrete predicting model and variation of temperature.展开更多
The radiative properties of a gold surface with one-dimensional Gaussian random roughness distribution were obtained with the finite-difference time-domain (FDTD) method and the recursive convolution treatment of th...The radiative properties of a gold surface with one-dimensional Gaussian random roughness distribution were obtained with the finite-difference time-domain (FDTD) method and the recursive convolution treatment of the Drude Model. The bi-directional reflection distribution function (BRDF) for both TM mode and TE mode were obtained and compared with the highly accurate experimental data from the earlier work. The incident wavelength varies from 1.152 μm to 3.392 μm and incident angle is at 300-70°, respectively. The results show that, the predicted values and experimental results are in good agreement. The highly specular peak in the BRDF is reproduced in the numerical simulations, and the increase of the TM mode BRDF is found to be attributed to the effect of a variation in the optical constant at the incident wavelength period.展开更多
According to the characteristics of thin-layer rolling and pouting construction technology and the complicated mechanical behavior of the roller compacted concrete dam (RCCD) construction interface, a constitutive m...According to the characteristics of thin-layer rolling and pouting construction technology and the complicated mechanical behavior of the roller compacted concrete dam (RCCD) construction interface, a constitutive model of endochronic damage was established based on the endochronic theory and damage mechanics. The proposed model abandons the traditional concept of elastic-plastic yield surface and can better reflect the real behavior of rolled control concrete. Basic equations were proposed for the fluid-solid coupling analysis, and the relationships among the corresponding key physical parameters were also put forward. One three-dimensional finite element method (FEM) program was obtained by studying the FEM type of the seepage-stress coupling intersection of the RCCD. The method was applied to an actual project, and the results show that the fluid-solid interaction influences dam deformation and dam abutment stability, which is in accordance with practice. Therefore, this model provides a new method for revealing the mechanical behavior of RCCD under the coupling field.展开更多
The radiative properties of three different materials surfaces with one-dimensional microscale random roughness were obtained with the finite difference time domain method(FDTD) and near-to-far-field transformation.Th...The radiative properties of three different materials surfaces with one-dimensional microscale random roughness were obtained with the finite difference time domain method(FDTD) and near-to-far-field transformation.The surface height conforms to the Gaussian probability density function distribution.Various computational modeling issues that affect the accuracy of the predicted properties were discussed.The results show that,for perfect electric conductor(PEC) surfaces,as the surface roughness increases,the magnitude of the spike reduces and eventually the spike disappears,and also as the ratio of root mean square roughness to the surface correlation distance increases,the retroreflection becomes evident.The predicted values of FDTD solutions are in good agreement with the ray tracing and integral equation solutions.The overall trend of bidirectional reflection distribution function(BRDF) of PEC surfaces and silicon surfaces is the same,but the silicon's is much less than the former's.The BRDF difference from two polarization modes for the gold surfaces is little for smaller wavelength,but it is much larger for the longer wavelength and the FDTD simulation results agree well with the measured data.In terms of PEC surfaces,as the incident angle increases,the reflectivity becomes more specular.展开更多
基金Projects(20-JKKJ-17,18-JKKJ-05)supported by the Shanxi Communications Holding Group Co.,Ltd.,ChinaProject(41907239)supported by the National Natural Science Foundation of China+1 种基金Project(2020M670698)supported by the China Postdoctoral Science FoundationProject(2019L0295)supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi,China。
文摘Beipanjiang Bridge is a long-span concrete arch bridges with stiffened skeleton(CABSS)in China.It has a fixed end arch with the span of 445 m and the rise of 100 m.To evaluate the rationality of the construction sequence and the time-dependent behavior of CABSS,an experimental study of a model bridge was explored.But the measured displacement and stress ratios of arch rib between prototype and model bridge did not subject to linear similarity relation when the time-dependent behavior was considered.So,the three-dimensional finite element models were established,and verified by the measured data.Then,the displacements and stresses of the prototype and model were compared with each other,when the elastic analysis or coupling of temperature and shrinkage,creep effect was considered.Furthermore,a parametric study was studied.The results showed that when the temperature,shrinkage and creep effect of concrete are considered,the finite element analysis results of prototype and model agree well with the measured results.The displacement and stress ratios of prototype and model bridge in construction and bridge completed stage do not present the geometric similarity ratio 7.5 and 1.0,respectively.They are also much influenced by concrete predicting model and variation of temperature.
基金Project(N110204015) supported by the Fundamental Research Funds for the Central Universities
文摘The radiative properties of a gold surface with one-dimensional Gaussian random roughness distribution were obtained with the finite-difference time-domain (FDTD) method and the recursive convolution treatment of the Drude Model. The bi-directional reflection distribution function (BRDF) for both TM mode and TE mode were obtained and compared with the highly accurate experimental data from the earlier work. The incident wavelength varies from 1.152 μm to 3.392 μm and incident angle is at 300-70°, respectively. The results show that, the predicted values and experimental results are in good agreement. The highly specular peak in the BRDF is reproduced in the numerical simulations, and the increase of the TM mode BRDF is found to be attributed to the effect of a variation in the optical constant at the incident wavelength period.
基金Projects(51139001,51179066,51079046,50909041) supported by the National Natural Science Foundation of ChinaProject(NCET-10-0359) supported by the Program for New Century Excellent Talents in UniversityProjects(2009586012,2009586912,2010585212)supported by the Special Fund of State Key Laboratory of China
文摘According to the characteristics of thin-layer rolling and pouting construction technology and the complicated mechanical behavior of the roller compacted concrete dam (RCCD) construction interface, a constitutive model of endochronic damage was established based on the endochronic theory and damage mechanics. The proposed model abandons the traditional concept of elastic-plastic yield surface and can better reflect the real behavior of rolled control concrete. Basic equations were proposed for the fluid-solid coupling analysis, and the relationships among the corresponding key physical parameters were also put forward. One three-dimensional finite element method (FEM) program was obtained by studying the FEM type of the seepage-stress coupling intersection of the RCCD. The method was applied to an actual project, and the results show that the fluid-solid interaction influences dam deformation and dam abutment stability, which is in accordance with practice. Therefore, this model provides a new method for revealing the mechanical behavior of RCCD under the coupling field.
基金Project(2009AA05Z215) supported by the National High-Tech Research and Development Program of China
文摘The radiative properties of three different materials surfaces with one-dimensional microscale random roughness were obtained with the finite difference time domain method(FDTD) and near-to-far-field transformation.The surface height conforms to the Gaussian probability density function distribution.Various computational modeling issues that affect the accuracy of the predicted properties were discussed.The results show that,for perfect electric conductor(PEC) surfaces,as the surface roughness increases,the magnitude of the spike reduces and eventually the spike disappears,and also as the ratio of root mean square roughness to the surface correlation distance increases,the retroreflection becomes evident.The predicted values of FDTD solutions are in good agreement with the ray tracing and integral equation solutions.The overall trend of bidirectional reflection distribution function(BRDF) of PEC surfaces and silicon surfaces is the same,but the silicon's is much less than the former's.The BRDF difference from two polarization modes for the gold surfaces is little for smaller wavelength,but it is much larger for the longer wavelength and the FDTD simulation results agree well with the measured data.In terms of PEC surfaces,as the incident angle increases,the reflectivity becomes more specular.