To overcome the deficiencies addressed in the conventional PID control and improve the dynamic performance and robustness of the system, a simple design and parameters tuning approach of internal model control-PID (I...To overcome the deficiencies addressed in the conventional PID control and improve the dynamic performance and robustness of the system, a simple design and parameters tuning approach of internal model control-PID (IMC-PID) controller was proposed for the first order plus time-delay (FOPTD) process and the second order plus time-delay (SOPTD) process. By approximating the time-delay term of the process model with the first-order Taylor series, the expressions for IMC-PID controller parameters were derived, and they had only one adjustable parameter 2 which was directly related to the dynamic performance and robustness of the system. Moreover, an analytical approach of selecting 2 was given based on the maximum sensitivity Ms. Then, the robust tuning of the system could be achieved according to the value of Ms. In addition, the proposed method could be extended to the integrator plus time-delay (IPTD) process and the first order delay integrating (FODI) process. Simulation studies were carried out on various processes with time-delay, and the results show that the proposed method could provide a better dynamic performance of both the set-point tracking and disturbance rejection and robustness against parameters perturbation.展开更多
A novel discrete-time reaching law was proposed for uncertain discrete-time system,which contained process noise and measurement noise.The proposed method reserves all the advantages of discrete-time reaching law,whic...A novel discrete-time reaching law was proposed for uncertain discrete-time system,which contained process noise and measurement noise.The proposed method reserves all the advantages of discrete-time reaching law,which not only decreases the band width of sliding mode and strengthens the system robustness,but also improves the dynamic performance and stability capability of the system.Moreover,a discrete-time sliding mode control strategy based on Kalman filter method was designed,and Kalman filter was employed to eliminate the influence of system noise.Simulation results show that there is no chattering phenomenon in the output of controller and the state variables of controlled system,and the proposed algorithm is also feasible and has strong robustness to external disturbances.展开更多
基金Project(2007011049) supported by the Natural Science Foundation of Shanxi Province,China
文摘To overcome the deficiencies addressed in the conventional PID control and improve the dynamic performance and robustness of the system, a simple design and parameters tuning approach of internal model control-PID (IMC-PID) controller was proposed for the first order plus time-delay (FOPTD) process and the second order plus time-delay (SOPTD) process. By approximating the time-delay term of the process model with the first-order Taylor series, the expressions for IMC-PID controller parameters were derived, and they had only one adjustable parameter 2 which was directly related to the dynamic performance and robustness of the system. Moreover, an analytical approach of selecting 2 was given based on the maximum sensitivity Ms. Then, the robust tuning of the system could be achieved according to the value of Ms. In addition, the proposed method could be extended to the integrator plus time-delay (IPTD) process and the first order delay integrating (FODI) process. Simulation studies were carried out on various processes with time-delay, and the results show that the proposed method could provide a better dynamic performance of both the set-point tracking and disturbance rejection and robustness against parameters perturbation.
基金Project(50721063) supported by the National Natural Science Foundation of China
文摘A novel discrete-time reaching law was proposed for uncertain discrete-time system,which contained process noise and measurement noise.The proposed method reserves all the advantages of discrete-time reaching law,which not only decreases the band width of sliding mode and strengthens the system robustness,but also improves the dynamic performance and stability capability of the system.Moreover,a discrete-time sliding mode control strategy based on Kalman filter method was designed,and Kalman filter was employed to eliminate the influence of system noise.Simulation results show that there is no chattering phenomenon in the output of controller and the state variables of controlled system,and the proposed algorithm is also feasible and has strong robustness to external disturbances.