期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于时间感知Transformer的交通流预测方法 被引量:7
1
作者 刘起东 刘超越 +4 位作者 邱紫鑫 高志敏 郭帅 刘冀钊 符明晟 《计算机科学》 CSCD 北大核心 2023年第11期88-96,共9页
作为智能交通系统的关键一环,交通流预测面临着长时预测不准的难题,其主要挑战在于交通流数据本身具有复杂的时空关联。近年来,Transformer的提出使得时序数据预测的研究取得了巨大进展,但将Transformer应用于交通流预测仍然存在以下两... 作为智能交通系统的关键一环,交通流预测面临着长时预测不准的难题,其主要挑战在于交通流数据本身具有复杂的时空关联。近年来,Transformer的提出使得时序数据预测的研究取得了巨大进展,但将Transformer应用于交通流预测仍然存在以下两个问题:1)静态的注意力机制难以捕获交通流随时间动态变化的时空依赖关系;2)采用自回归的预测方式会引发严重的误差累积现象。针对以上问题,提出了一种基于时间感知Transformer的交通流预测模型。首先,设计了一种新的时间感知注意力机制,可以根据时间特征定制注意力计算方案,从而更精准地反映时空依赖关系;其次,在Transformer的训练阶段舍弃了Teacher Forcing机制,并采用非自回归的预测方式来避免误差累积问题;最后,在两个真实交通数据集上进行实验,实验结果表明,所提方法可以有效捕获交通流的时空依赖,相比最优的基线方法,长时预测性能提升了2.09%~4.01%。 展开更多
关键词 交通流预测 时空建模 时间感知注意力机制 非自回归 TRANSFORMER
在线阅读 下载PDF
基于时间和关系感知的图协同过滤跨域序列推荐 被引量:8
2
作者 任豪 刘柏嵩 +2 位作者 孙金杨 董倩 钱江波 《计算机研究与发展》 EI CSCD 北大核心 2023年第1期112-124,共13页
跨域序列推荐旨在从给定的某用户在不同领域中的历史交互序列中挖掘其偏好,预测其在多个领域中最可能与之交互的下一个项目,以缓解数据稀疏对用户意图捕捉和预测的影响.受协同过滤思想启发,提出一种基于时间和关系感知的图协同过滤跨域... 跨域序列推荐旨在从给定的某用户在不同领域中的历史交互序列中挖掘其偏好,预测其在多个领域中最可能与之交互的下一个项目,以缓解数据稀疏对用户意图捕捉和预测的影响.受协同过滤思想启发,提出一种基于时间和关系感知的图协同过滤跨域序列推荐(timeandrelation-awaregraph collaborative filtering for cross-domain sequential recommendation,TRaGCF)算法,充分挖掘用户高阶行为模式同时利用跨域用户行为模式双向迁移,解决序列推荐中的数据稀疏问题.首先,为获得用户行为序列中项目间复杂的时序依赖关系,提出时间感知图注意力(time-aware graph attention,Ta-GAT)学习项目的域间序列级表示;其次,通过域内用户-项目交互二部图挖掘用户的行为偏好,提出关系感知图注意力(relation-aware graph attention,Ra-GAT)学习项目协同表示和用户协同偏好表示,为用户偏好特征的跨域迁移提供基础;最后为同步提高2个领域中的推荐效果,提出用户偏好特征双向迁移模块(user preference feature bi-directional transfer module,PBT),实现迁移用户域间共有偏好,保留用户域内特有偏好.在Amazon Movie-Book和Food-Kitchen数据集上验证了算法的正确性和有效性.实验结果表明,在跨域序列推荐场景下考虑项目间深层复杂的关联关系对挖掘用户意图十分必要;实验还验证了在跨域迁移用户偏好过程中保留域内用户特有偏好对全面用户画像的重要性. 展开更多
关键词 跨域序列推荐 图协同过滤 时间感知注意力机制 关系感知注意力机制 数据稀疏
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部